Influence of EEG channel reduction on lower limb motor imagery during electrical stimulation in healthy and paraplegic subjects

dc.contributor.authorJúnior, Paulo Broniera
dc.contributor.authorCampos, Daniel Prado
dc.contributor.authorLazzaretti, André Eugênio
dc.contributor.authorNohama, Percy
dc.contributor.authorCarvalho, Aparecido Augusto [UNESP]
dc.contributor.authorKrueger, Eddy
dc.contributor.authorTeixeira, Marcelo Carvalho Minhoto [UNESP]
dc.contributor.institutionIoT e Manufatura 4.0
dc.contributor.institutionUniversidade Tecnológica Federal do Paraná (UTFPR)
dc.contributor.institutionPontifícia Universidade Católica do Paraná
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Londrina (UEL)
dc.date.accessioned2022-04-29T08:39:19Z
dc.date.available2022-04-29T08:39:19Z
dc.date.issued2022-01-01
dc.description.abstractPurpose: Among a wide range of applications that make use of Brain-Computer Interfaces (BCIs), the pattern recognition of motor imagery (MI) to trigger neuromodulation systems in the control of functional movements has received increasing attention. In this work, we evaluate the effect of reducing the number of electroencephalography (EEG) channels in the performance of lower limbs’ motor imagery classification during the application of electrical stimulation (ES) in 20 Hz (ES20Hz), 35 Hz (ES35Hz), and 50 Hz (ES50Hz). Methods: Five subjects participated in the study, three healthy participants (average age of 28 years old) and two paraplegic volunteers, 43 and 47 years old, respectively. In total, each participant performed 90 repetitions of motor imagery of the lower limb with 11 EEG channels (10-10 configuration) under electrical stimulation. After the data acquisition, a systematic and artificial reduction in the number of EEG channels (decreasing from 11 to 1 and considering all cases 11 , 10 , … , 2 , 1) was applied to evaluate the offline classifiers. The pattern classification was performed using the following methods: (i) linear discriminant analysis (LDA), (ii) multilayer perceptron (MLP), and (iii) support vector machine (SVM). The accuracy performance of 11 different configurations regarding the EEG channels was obtained and studied. Results: The highest accuracy (86.5%) was obtained with the SVM classifier. There was no significant difference in the accuracy (median ± interquartile range) obtained with the 11-EEG channel configuration (SVM = ES20Hz: 78.50% ± 8.18%, ES35Hz: 77.80% ± 7.15%, ES50Hz: 75.80% ± 5.17% and LDA = ES20Hz: 69.40% ± 6.35%, ES35Hz: 69.00% ± 3.90%, ES50Hz: 67.30% ± 5.35%) and the 4-EEG channel configuration (SVM = ES20Hz: 72.10% ± 6.38%, ES35Hz: 72.20% ± 6.42%, ES50Hz: 68.20% ± 5.07% and LDA = ES20Hz: 63.30% ± 3.58%, ES35Hz: 63.60% ± 3.83%, ES50Hz: 60.46% ± 5.65%). Conclusion: These results are important for future neuroprosthesis implementations, as they indicate the possibility of simpler and more compact assistive technology control systems, being the main contribution of this work.en
dc.description.affiliationInstituto Senai de Tecnologia da Informação e Comunicação (ISTIC) Laboratório de Sistemas Eletrônicos: Embarcados e de potência IoT e Manufatura 4.0, Rua Belém 844, PR
dc.description.affiliationUniversidade Tecnológica Federal do Paraná (UTFPR), Marcílio Dias, 635, PR
dc.description.affiliationUniversidade Tecnológica Federal do Paraná (UTFPR), Sete de Setembro, 3165, PR
dc.description.affiliationPontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, PR
dc.description.affiliationDepartamento de engenharia elétrica Universidade Estadual Paulista Júlio de Mesquita Filho - Faculdade de Engenharia de Ilha Solteira, Campus Ilha Solteira, Av. Brasil Sul, 56, SP
dc.description.affiliationUniversidade Estadual de Londrina Departamento de Anatomia Laboratório de Engenharia Neural e de Reabilitação, Rodovia Celso Garcia Cid - Pr 445, Km 380, PR
dc.description.affiliationUnespDepartamento de engenharia elétrica Universidade Estadual Paulista Júlio de Mesquita Filho - Faculdade de Engenharia de Ilha Solteira, Campus Ilha Solteira, Av. Brasil Sul, 56, SP
dc.identifierhttp://dx.doi.org/10.1007/s42600-021-00189-6
dc.identifier.citationResearch on Biomedical Engineering.
dc.identifier.doi10.1007/s42600-021-00189-6
dc.identifier.issn2446-4740
dc.identifier.issn2446-4732
dc.identifier.scopus2-s2.0-85123869715
dc.identifier.urihttp://hdl.handle.net/11449/230319
dc.language.isoeng
dc.relation.ispartofResearch on Biomedical Engineering
dc.sourceScopus
dc.subjectEEG classification
dc.subjectMotor imagery
dc.subjectSignal classification
dc.titleInfluence of EEG channel reduction on lower limb motor imagery during electrical stimulation in healthy and paraplegic subjectsen
dc.typeResenha
unesp.author.orcid0000-0001-9857-6208[1]
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos