Analytical Path-Integral Pricing of Deterministic Moving-Barrier Options under Non-Gaussian Distributions

Nenhuma Miniatura disponível

Data

2020-02-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this work, we present an analytical model, based on the path-integral formalism of statistical mechanics, for pricing options using first-passage time problems involving both fixed and deterministically moving absorbing barriers under possibly non-Gaussian distributions of the underlying object. We adapt to our problem a model originally proposed by De Simone et al. (2011) to describe the formation of galaxies in the universe, which uses cumulant expansions in terms of the Gaussian distribution, and we generalize it to take into account drift and cumulants of orders higher than three. From the probability density function, we obtain an analytical pricing model, not only for vanilla options (thus removing the need of volatility smile inherent to the Black & Scholes (1973) model), but also for fixed or deterministically moving barrier options. Market prices of vanilla options are used to calibrate the model, and barrier option pricing arising from the model is compared to the price resulted from the relative entropy model.

Descrição

Idioma

Inglês

Como citar

International Journal of Theoretical and Applied Finance, v. 23, n. 1, 2020.

Itens relacionados

Financiadores