Logo do repositório
 

RIEMANN ZETA ZEROS AND PRIME NUMBER SPECTRA IN QUANTUM FIELD THEORY

dc.contributor.authorMenezes, G. [UNESP]
dc.contributor.authorSvaiter, B. F.
dc.contributor.authorSvaiter, N. F.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInst Matematica Pura & Aplicada
dc.contributor.institutionCentro Brasileiro de Pesquisas Físicas (CBPF)
dc.date.accessioned2014-12-03T13:11:22Z
dc.date.available2014-12-03T13:11:22Z
dc.date.issued2013-10-20
dc.description.abstractThe Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line Re(s) = 1/2. Hilbert and Polya suggested that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory. Using the construction of the so-called super-zeta functions or secondary zeta functions built over the Riemann nontrivial zeros and the regularity property of one of this function at the origin, we show that it is possible to extend the Hilbert-Polya conjecture to systems with countably infinite number of degrees of freedom. The sequence of the nontrivial zeros of the Riemann zeta function can be interpreted as the spectrum of a self-adjoint operator of some hypothetical system described by the functional approach to quantum field theory. However, if one considers the same situation with numerical sequences whose asymptotic distributions are not far away from the asymptotic distribution of prime numbers, the associated functional integral cannot be constructed. Finally, we discuss possible relations between the asymptotic behavior of a sequence and the analytic domain of the associated zeta function.en
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil
dc.description.affiliationInst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, Brazil
dc.description.affiliationCtr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
dc.format.extent16
dc.identifierhttp://dx.doi.org/10.1142/S0217751X13501285
dc.identifier.citationInternational Journal Of Modern Physics A. Singapore: World Scientific Publ Co Pte Ltd, v. 28, n. 26, 16 p., 2013.
dc.identifier.doi10.1142/S0217751X13501285
dc.identifier.issn0217-751X
dc.identifier.urihttp://hdl.handle.net/11449/113061
dc.identifier.wosWOS:000326291000005
dc.language.isoeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofInternational Journal of Modern Physics A
dc.relation.ispartofjcr1.291
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectNumber theoryen
dc.subjectzeta regularizationen
dc.subjectfield theoryen
dc.titleRIEMANN ZETA ZEROS AND PRIME NUMBER SPECTRA IN QUANTUM FIELD THEORYen
dc.typeArtigo
dcterms.rightsHolderWorld Scientific Publ Co Pte Ltd
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos