Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Automated acoustic detection of a cicadid pest in coffee plantations

dc.contributor.authorEscola, João Paulo Lemos
dc.contributor.authorGuido, Rodrigo Capobianco [UNESP]
dc.contributor.authorda Silva, Ivan Nunes
dc.contributor.authorCardoso, Alexandre Moraes
dc.contributor.authorMaccagnan, Douglas Henrique Bottura
dc.contributor.authorDezotti, Artur Kenzo
dc.contributor.institutionInstituto Federal de São Paulo
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual de Goiás
dc.date.accessioned2020-12-12T02:33:37Z
dc.date.available2020-12-12T02:33:37Z
dc.date.issued2020-02-01
dc.description.abstractSouth american countries are the largest coffee producers in the world. Nevertheless, Cicadidae, the colloquial term for cicadas, is one of the key pests responsible for dropping the production. Currently, there is no electronic device or autonomous technological resource commercially available for detecting certain species of cicadas in the crop, penalizing the farmers on the management of that insect. Thus, this article presents a novel algorithm implemented in a low-cost real-time plataform for the acoustic detection of cicadas in plantations. Based on the Bark Scale (BS), Wavelet-packet Transform (WPT), Paraconsistent Feature Engineering (PFE) and Support Vector Machines (SVMs), the proposed technique was assessed with a database of 1366 recordings, presenting a value of accuracy of 96.41% for the distinction among cicadas and background noise, where the latter includes sounds from mechanical devices, birds, animals in general and speech, among others.en
dc.description.affiliationInstituto Federal de São Paulo, Av. C-1, 250
dc.description.affiliationInstituto de Biociências Letras e Ciências Exatas Unesp – Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000
dc.description.affiliationUniversidade de São Paulo, Av. Trabalhador São-carlense, 400
dc.description.affiliationUniversidade Estadual de Goiás, Campus Iporá, Av. R2 Qd.1, s/n, Novo Horizonte II
dc.description.affiliationUnespInstituto de Biociências Letras e Ciências Exatas Unesp – Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 306808/2018-8
dc.description.sponsorshipIdCNPq: 800694/2016-3
dc.identifierhttp://dx.doi.org/10.1016/j.compag.2020.105215
dc.identifier.citationComputers and Electronics in Agriculture, v. 169.
dc.identifier.doi10.1016/j.compag.2020.105215
dc.identifier.issn0168-1699
dc.identifier.lattes6542086226808067
dc.identifier.orcid0000-0002-0924-8024
dc.identifier.scopus2-s2.0-85078085288
dc.identifier.urihttp://hdl.handle.net/11449/201480
dc.language.isoeng
dc.relation.ispartofComputers and Electronics in Agriculture
dc.sourceScopus
dc.subjectBark Scale (BS)
dc.subjectCicada
dc.subjectParaconsistent Feature Engineering (PFE)
dc.subjectSupport Vector Machine (SVM)
dc.subjectWavelet-packet Transform (WPT)
dc.titleAutomated acoustic detection of a cicadid pest in coffee plantationsen
dc.typeArtigo
unesp.author.lattes6542086226808067[2]
unesp.author.orcid0000-0002-0924-8024[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos