Automated acoustic detection of a cicadid pest in coffee plantations
dc.contributor.author | Escola, João Paulo Lemos | |
dc.contributor.author | Guido, Rodrigo Capobianco [UNESP] | |
dc.contributor.author | da Silva, Ivan Nunes | |
dc.contributor.author | Cardoso, Alexandre Moraes | |
dc.contributor.author | Maccagnan, Douglas Henrique Bottura | |
dc.contributor.author | Dezotti, Artur Kenzo | |
dc.contributor.institution | Instituto Federal de São Paulo | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual de Goiás | |
dc.date.accessioned | 2020-12-12T02:33:37Z | |
dc.date.available | 2020-12-12T02:33:37Z | |
dc.date.issued | 2020-02-01 | |
dc.description.abstract | South american countries are the largest coffee producers in the world. Nevertheless, Cicadidae, the colloquial term for cicadas, is one of the key pests responsible for dropping the production. Currently, there is no electronic device or autonomous technological resource commercially available for detecting certain species of cicadas in the crop, penalizing the farmers on the management of that insect. Thus, this article presents a novel algorithm implemented in a low-cost real-time plataform for the acoustic detection of cicadas in plantations. Based on the Bark Scale (BS), Wavelet-packet Transform (WPT), Paraconsistent Feature Engineering (PFE) and Support Vector Machines (SVMs), the proposed technique was assessed with a database of 1366 recordings, presenting a value of accuracy of 96.41% for the distinction among cicadas and background noise, where the latter includes sounds from mechanical devices, birds, animals in general and speech, among others. | en |
dc.description.affiliation | Instituto Federal de São Paulo, Av. C-1, 250 | |
dc.description.affiliation | Instituto de Biociências Letras e Ciências Exatas Unesp – Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000 | |
dc.description.affiliation | Universidade de São Paulo, Av. Trabalhador São-carlense, 400 | |
dc.description.affiliation | Universidade Estadual de Goiás, Campus Iporá, Av. R2 Qd.1, s/n, Novo Horizonte II | |
dc.description.affiliationUnesp | Instituto de Biociências Letras e Ciências Exatas Unesp – Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000 | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | CNPq: 306808/2018-8 | |
dc.description.sponsorshipId | CNPq: 800694/2016-3 | |
dc.identifier | http://dx.doi.org/10.1016/j.compag.2020.105215 | |
dc.identifier.citation | Computers and Electronics in Agriculture, v. 169. | |
dc.identifier.doi | 10.1016/j.compag.2020.105215 | |
dc.identifier.issn | 0168-1699 | |
dc.identifier.lattes | 6542086226808067 | |
dc.identifier.orcid | 0000-0002-0924-8024 | |
dc.identifier.scopus | 2-s2.0-85078085288 | |
dc.identifier.uri | http://hdl.handle.net/11449/201480 | |
dc.language.iso | eng | |
dc.relation.ispartof | Computers and Electronics in Agriculture | |
dc.source | Scopus | |
dc.subject | Bark Scale (BS) | |
dc.subject | Cicada | |
dc.subject | Paraconsistent Feature Engineering (PFE) | |
dc.subject | Support Vector Machine (SVM) | |
dc.subject | Wavelet-packet Transform (WPT) | |
dc.title | Automated acoustic detection of a cicadid pest in coffee plantations | en |
dc.type | Artigo | |
unesp.author.lattes | 6542086226808067[2] | |
unesp.author.orcid | 0000-0002-0924-8024[2] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |