On the global dynamics of the Rabinovich system
Nenhuma Miniatura disponível
Data
2008-07-11
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Iop Publishing Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
In this paper by using the Poincare compactification in R(3) make a global analysis of the Rabinovich system(x) over dot = hy - v(1)x + yz, (y) over dot = hx - v(2)y - xz, (z) over dot = -v(3)z + xy,with (x, y, z) is an element of R(3) and ( h, v(1), v(2), v(3)) is an element of R(4). We give the complete description of its dynamics on the sphere at infinity. For ten sets of the parameter values the system has either first integrals or invariants. For these ten sets we provide the global phase portrait of the Rabinovich system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity). We prove that for convenient values of the parameters the system has two families of singularly degenerate heteroclinic cycles. Then changing slightly the parameters we numerically found a four wings butterfly shaped strange attractor.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 41, n. 27, p. 21, 2008.