Códigos de bloco espaço-tempo para canais mimo 2 x 2 via álgebras cíclicas de divisão
dc.contributor.advisor | Benedito, Cintya Wink de Oliveira [UNESP] | |
dc.contributor.author | Duarte, Julia Danielli | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2021-08-18T19:03:09Z | |
dc.date.available | 2021-08-18T19:03:09Z | |
dc.date.issued | 2021-05-04 | |
dc.description.abstract | This work aims to present the construction of the Golden code, which is a perfect 2 2 space-time block code (STBC) built from a cyclic division algebra. This code is said to be perfect because it is of full rate and full diversity, has non-zero determinant, which allows a lower bound for the minimum determinant, and has cubic shaping constellation. Furthermore, we will define STBC in general, and show that Alamouti’s code, the precursor to STBCs, can be constructed via a special division cyclic algebra, the algebra of Hamilton’s quaternions. After the constructions, we will present analyses of these codes in wireless communication systems with multiple antennas at the transmitter and receiver (Multiple-Input Multiple-Output - MIMO) 2 1 and 2 2 in the case of Alamouti and 2 2 in the case of the Golden code, considering that the receiver is coherent, that is, has perfect Channel State Infomartion (CSI) and that we are in a quasi-static Rayleigh fading flat frequency channel with AWGN noise. We use modulations of different orders M-QAM (M-ary Quadrature Amplitude Modulation) and a maximum likelihood decoder (Maximum Likelihood - ML) specific to each encoding. The performance analyses of the codes were done through computer simulations, in which the Monte Carlo method was employed. In these simulations, the symbol error rate (SER) curves are evaluated by the signal-to-noise ratio (SNR). With the results obtained, it was possible to show that the Golden code has a superior performance compared to the Alamouti code. For the same modulation order, the Golden code can have twice the spectral efficiency with only 1 4 of the average energy, compared to the Alamouti code. And for the case that both have the same spectral efficiency, the Golden code is also superior, since it requires less energy for transmission. | en |
dc.description.abstract | Este trabalho tem o objetivo de apresentar a construção do código de Ouro, que é um código de bloco espaço tempo (Space-Time Block Code - STBC) 2 2 perfeito construído a partir de uma álgebra cíclica de divisão. Este código é dito perfeito pois é de taxa e diversidade máximas, tem determinante diferente de zero, o que permite obter um limitante inferior para o determinante mínimo, e tem constelação em formato de shaping cúbico. Além disso, iremos definir STBC de uma forma geral, e mostrar que o código de Alamouti, precursor dos STBCs, pode ser construído via uma álgebra cíclica de divisão especial, a álgebra dos quatérnios de Hamilton. Após as construções, vamos apresentar análises desses códigos em sistemas de comunicação sem fio com múltiplas antenas no transmissor e receptor (Multiple-Input Multiple-Output - MIMO) 2 1 e 2 2 no caso do Alamouti e 2 2 no caso do código de Ouro, considerando que o receptor seja coerente, isto é, tenha informação do estado de canal (Channel State Information - CSI) perfeito e que estamos em um canal de desvanecimento Rayleigh quase-estático e plano de ruído AWGN. Utilizamos modulações de diferentes ordens M-QAM (M- ary Quadrature Amplitude Modulation) e um decodificador de máxima verossimilhança (Maximum Likelihood - ML) específico para cada codificação. As análises de desempenho dos códigos foram realizadas através de simulações computacionais, nas quais foram empregadas o método de Monte Carlo. Nessas simulações, são avaliadas as curvas da taxa de erro de símbolo (Symbol Error Rate - SER) pela relação sinal-ruído (Signal-to-Noise Ratio - SNR). Com os resultados obtidos, foi possível mostrar que o código de Ouro possui um desempenho superior em comparação ao código de Alamouti. Para a mesma ordem de modulação, o código de Ouro consegue ter o dobro da eficiência espectral com apenas 1 4 da energia média, em comparação ao código de Alamouti. E para o caso que ambos tenham a mesma eficiência espectral, o código de Ouro também tem performance superior, pois necessita de menos energia para transmissão. | pt |
dc.description.sponsorship | Não recebi financiamento | |
dc.identifier.lattes | 7916375574050821 | |
dc.identifier.orcid | 0000-0002-4806-3399 | |
dc.identifier.uri | http://hdl.handle.net/11449/214071 | |
dc.language.iso | por | |
dc.publisher | Universidade Estadual Paulista (Unesp) | |
dc.rights.accessRights | Acesso aberto | |
dc.subject | Codificação | pt |
dc.subject | Quaternios | pt |
dc.subject | Sistemas MIMO | pt |
dc.subject | Telecomunicações | pt |
dc.title | Códigos de bloco espaço-tempo para canais mimo 2 x 2 via álgebras cíclicas de divisão | pt |
dc.title.alternative | Spacetime block codes for 2 x 2 via mimo channels cyclic division algebras | en |
dc.type | Trabalho de conclusão de curso | |
unesp.advisor.lattes | 7916375574050821 | |
unesp.advisor.orcid | 0000-0002-4806-3399 | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Engenharia, São João da Boa Vista | pt |
unesp.undergraduate | Engenharia Eletrônica e de Telecomunicações - CESJBV | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- duarte_jd_tcc_sjbv.pdf
- Tamanho:
- 1023.11 KB
- Formato:
- Adobe Portable Document Format
Licença do Pacote
1 - 2 de 2
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 2.44 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Nenhuma Miniatura disponível
- Nome:
- duarte_jd_autorizacao_sjbv.pdf
- Tamanho:
- 107.03 KB
- Formato:
- Adobe Portable Document Format
- Descrição: