Periodic density functional theory study of structural and electronic properties of single-walled zinc oxide and carbon nanotubes

dc.contributor.authorMarana, Naiara L. [UNESP]
dc.contributor.authorAlbuquerque, Anderson R.
dc.contributor.authorLa Porta, Felipe A.
dc.contributor.authorLongo, Elson [UNESP]
dc.contributor.authorSambrano, Julio R. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionScience and Technology of Sertão Pernambucano
dc.contributor.institutionFederal Technological University of Paraná
dc.date.accessioned2018-12-11T17:26:57Z
dc.date.available2018-12-11T17:26:57Z
dc.date.issued2016-05-01
dc.description.abstractPeriodic density functional theory calculations with the B3LYP hybrid functional and all-electron Gaussian basis set were performed to simulate the structural and electronic properties as well as the strain and formation energies of single-walled ZnO nanotubes (SWZnONTs) and Carbon nanotubes (SWCNTs) with different chiralities as functions of their diameters. For all SWZnONTs, the band gap, strain energy, and formation energy converge to ∼4.5 eV, 0.0 eV/atom, and 0.40 eV/atom, respectively. This result suggests that the nanotubes are formed more easily from the surface than from the bulk. For SWCNTs, the strain energy is always positive, while the formation energy is negative for armchair and zigzag nanotubes, therefore suggesting that these types of nanotubes can be preferentially formed from the bulk. The electronic properties of SWCNTs depend on the chirality; all armchair nanotubes are metallic, while zigzag and chiral nanotubes can be metallic or semiconducting, depending on the n and m vectors.en
dc.description.affiliationModeling and Molecular Simulations Group São Paulo State University UNESP
dc.description.affiliationFederal Institute of Education Science and Technology of Sertão Pernambucano
dc.description.affiliationChemistry Department Federal Technological University of Paraná
dc.description.affiliationSão Paulo State University Chemistry Institute UNESP
dc.description.affiliationUnespModeling and Molecular Simulations Group São Paulo State University UNESP
dc.description.affiliationUnespSão Paulo State University Chemistry Institute UNESP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent36-47
dc.identifierhttp://dx.doi.org/10.1016/j.jssc.2016.01.017
dc.identifier.citationJournal of Solid State Chemistry, v. 237, p. 36-47.
dc.identifier.doi10.1016/j.jssc.2016.01.017
dc.identifier.issn1095-726X
dc.identifier.issn0022-4596
dc.identifier.scopus2-s2.0-84956668738
dc.identifier.urihttp://hdl.handle.net/11449/177755
dc.language.isoeng
dc.relation.ispartofJournal of Solid State Chemistry
dc.relation.ispartofsjr0,632
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectDFT
dc.subjectStrain energy
dc.subjectZnO nanotubes
dc.titlePeriodic density functional theory study of structural and electronic properties of single-walled zinc oxide and carbon nanotubesen
dc.typeArtigo
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Química, Araraquarapt
unesp.departmentBioquímica e Tecnologia - IQpt

Arquivos