Computation of contour integrals on ℳ0,n
dc.contributor.author | Cachazo, Freddy | |
dc.contributor.author | Gomez, Humberto [UNESP] | |
dc.contributor.institution | Perimeter Institute for Theoretical Physics | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Facultad de Ciencias Básicas — Universidad Santiago de Cali | |
dc.date.accessioned | 2018-12-11T17:02:28Z | |
dc.date.available | 2018-12-11T17:02:28Z | |
dc.date.issued | 2016-04-01 | |
dc.description.abstract | Contour integrals of rational functions over (Formula presented.) , the moduli space of n-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on (Formula presented.). The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen’s theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory. | en |
dc.description.affiliation | Perimeter Institute for Theoretical Physics | |
dc.description.affiliation | Instituto de Fisica Teorica UNESP — Universidade Estadual Paulista, Caixa Postal 70532-2 | |
dc.description.affiliation | Facultad de Ciencias Básicas — Universidad Santiago de Cali, Calle 5 N °62-00, Barrio Pampalinda | |
dc.description.affiliationUnesp | Instituto de Fisica Teorica UNESP — Universidade Estadual Paulista, Caixa Postal 70532-2 | |
dc.identifier | http://dx.doi.org/10.1007/JHEP04(2016)108 | |
dc.identifier.citation | Journal of High Energy Physics, v. 2016, n. 4, 2016. | |
dc.identifier.doi | 10.1007/JHEP04(2016)108 | |
dc.identifier.file | 2-s2.0-84964252141.pdf | |
dc.identifier.issn | 1029-8479 | |
dc.identifier.issn | 1126-6708 | |
dc.identifier.scopus | 2-s2.0-84964252141 | |
dc.identifier.uri | http://hdl.handle.net/11449/172862 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of High Energy Physics | |
dc.relation.ispartofsjr | 1,227 | |
dc.relation.ispartofsjr | 1,227 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Differential and Algebraic Geometry | |
dc.subject | Scattering Amplitudes | |
dc.subject | Superstrings and Heterotic Strings | |
dc.title | Computation of contour integrals on ℳ0,n | en |
dc.type | Artigo |
Arquivos
Pacote Original
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- 2-s2.0-84964252141.pdf
- Tamanho:
- 888.47 KB
- Formato:
- Adobe Portable Document Format
- Descrição: