Publicação: Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images
dc.contributor.author | Santos, Luiz Fernando Segato Dos [UNESP] | |
dc.contributor.author | Rozendo, Guilherme Botazzo [UNESP] | |
dc.contributor.author | Nascimento, Marcelo Zanchetta Do | |
dc.contributor.author | Tosta, Thaina Aparecida Azevedo | |
dc.contributor.author | Longo, Leonardo Henrique Da Costa [UNESP] | |
dc.contributor.author | Neves, Leandro Alves [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade Federal de Uberlândia (UFU) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2023-03-01T21:12:05Z | |
dc.date.available | 2023-03-01T21:12:05Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | In this work, we have proposed a method that combines multiscale and multidimensional approaches with Shannon entropy, named HM. The method was combined with other fractal and sample entropy techniques and tested on H&E colorectal images. The results provided an accuracy of 95.36% for the combination HM and SampEnMF. The combinations and analyses presented here are important contributions to the Literature focused on the investigation of techniques for the development of computer-aided diagnosis. | en |
dc.description.affiliation | Sao Paulo State University (UNESP) Department of Computer Science and Statistics (DCCE) | |
dc.description.affiliation | Federal University of Uberlândia (UFU) Faculty of Computer Science (FACOM) | |
dc.description.affiliation | Science and Technology Institute Federal University of São Paulo (UNIFESP) | |
dc.description.affiliationUnesp | Sao Paulo State University (UNESP) Department of Computer Science and Statistics (DCCE) | |
dc.identifier | http://dx.doi.org/10.1109/IWSSIP55020.2022.9854438 | |
dc.identifier.citation | International Conference on Systems, Signals, and Image Processing, v. 2022-June. | |
dc.identifier.doi | 10.1109/IWSSIP55020.2022.9854438 | |
dc.identifier.issn | 2157-8702 | |
dc.identifier.issn | 2157-8672 | |
dc.identifier.scopus | 2-s2.0-85137169801 | |
dc.identifier.uri | http://hdl.handle.net/11449/241596 | |
dc.language.iso | eng | |
dc.relation.ispartof | International Conference on Systems, Signals, and Image Processing | |
dc.source | Scopus | |
dc.subject | colorectal images | |
dc.subject | combination | |
dc.subject | multidimensional | |
dc.subject | multiscale | |
dc.subject | shannon entropy | |
dc.title | Multidimensional shannon entropy (HM) as an approach to classify H&E colorectal images | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |