Publicação:
LBP operators on curvelet coefficients as an algorithm to describe texture in breast cancer tissues

dc.contributor.authorTambasco Bruno, Daniel O.
dc.contributor.authorDo Nascimento, Marcelo Z.
dc.contributor.authorRamos, Rodrigo P.
dc.contributor.authorBatista, Valério R.
dc.contributor.authorNeves, Leandro A. [UNESP]
dc.contributor.authorMartins, Alessandro S.
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUFU - FACOM
dc.contributor.institutionUNIVASF - CENEL
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionIFTM
dc.date.accessioned2018-12-11T17:01:51Z
dc.date.available2018-12-11T17:01:51Z
dc.date.issued2016-08-15
dc.description.abstractIn computer-aided diagnosis one of the crucial steps to classify suspicious lesions is the extraction of features. Texture analysis methods have been used in the analysis and interpretation of medical images. In this work we present a method based on the association among curvelet transform, local binary patterns, feature selection by statistical analysis and distinct classification methods, in order to support the development of computer aided diagnosis system. The similar features were removed by the statistical analysis of variance (ANOVA). The understanding of the features was evaluated by applying the decision tree, random forest, support vector machine and polynomial (PL) classifiers, considering the metrics accuracy (AC) and area under the ROC curve (AUC): the rates were calculated on images of breast tissues with different physical properties (commonly observed in clinical practice). The datasets were the Digital Database for Screening Mammography, Breast Cancer Digital Repository and UCSB biosegmentation benchmark. The investigated groups were normal-abnormal and benign-malignant. The association of curvelet transform, local binary pattern and ANOVA with the PL classifier achieved higher AUC and AC values for all cases: the obtained rates were among 91% and 100%. These results are relevant, specially when we consider the difficulties of clinical practice in distinguishing the studied groups. The proposed association is useful as an automated protocol for the diagnosis of breast tissues and may contribute to the diagnosis of breast tissues (mammographic and histopathological images).en
dc.description.affiliationUFABC - CMCC, av. dos Estados 5001, Bl.B
dc.description.affiliationUFU - FACOM, av. João Neves de Ávila 2121, Bl.B
dc.description.affiliationUNIVASF - CENEL, av. Antoˆnio C. Magalhães 510
dc.description.affiliationUNESP - DCCE, r. Cristóvão Colombo 2265
dc.description.affiliationIFTM, r. Belarmino Vilela Junqueira S/N
dc.description.affiliationUnespUNESP - DCCE, r. Cristóvão Colombo 2265
dc.format.extent329-340
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2016.02.019
dc.identifier.citationExpert Systems with Applications, v. 55, p. 329-340.
dc.identifier.doi10.1016/j.eswa.2016.02.019
dc.identifier.file2-s2.0-84961173093.pdf
dc.identifier.issn0957-4174
dc.identifier.scopus2-s2.0-84961173093
dc.identifier.urihttp://hdl.handle.net/11449/172704
dc.language.isoeng
dc.relation.ispartofExpert Systems with Applications
dc.relation.ispartofsjr1,271
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectBreast cancer tissues
dc.subjectComputer aided diagnosis
dc.subjectCurvelet transform
dc.subjectLocal binary pattern
dc.subjectPolynomial classifier
dc.subjectTexture analysis
dc.titleLBP operators on curvelet coefficients as an algorithm to describe texture in breast cancer tissuesen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-3537-0178[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84961173093.pdf
Tamanho:
3.84 MB
Formato:
Adobe Portable Document Format
Descrição: