Sliding Shilnikov connection in Filippov-type predator–prey model
dc.contributor.author | Carvalho, Tiago | |
dc.contributor.author | Duarte Novaes, Douglas | |
dc.contributor.author | Gonçalves, Luiz Fernando [UNESP] | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2020-12-12T01:23:47Z | |
dc.date.available | 2020-12-12T01:23:47Z | |
dc.date.issued | 2020-05-01 | |
dc.description.abstract | Recently, a piecewise smooth differential system was derived as a model of a 1 predator–2 prey interaction where the predator feeds adaptively on its preferred prey and an alternative prey. In such a model, strong evidence of chaotic behavior was numerically found. Here, we revisit this model and prove the existence of a Shilnikov sliding connection when the parameters are taken in a codimension one submanifold of the parameter space. As a consequence of this connection, we conclude, analytically, that the model behaves chaotically for an open region of the parameter space. | en |
dc.description.affiliation | Departamento de Computação e Matemática Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo, Av. Bandeirantes, 3900 | |
dc.description.affiliation | Departamento de Matemática Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda 651, Cidade Universitária Zeferino Vaz | |
dc.description.affiliation | Instituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265 | |
dc.description.affiliationUnesp | Instituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265 | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPESP: 2017/00883-0 | |
dc.description.sponsorshipId | FAPESP: 2018/13481-0 | |
dc.description.sponsorshipId | FAPESP: 2018/16430-8 | |
dc.description.sponsorshipId | FAPESP: 2019/10269-3 | |
dc.description.sponsorshipId | CNPq: 306649/2018-7 | |
dc.description.sponsorshipId | CNPq: 438975/2018-9 | |
dc.description.sponsorshipId | CAPES: Finance Code 001 | |
dc.format.extent | 2973-2987 | |
dc.identifier | http://dx.doi.org/10.1007/s11071-020-05672-w | |
dc.identifier.citation | Nonlinear Dynamics, v. 100, n. 3, p. 2973-2987, 2020. | |
dc.identifier.doi | 10.1007/s11071-020-05672-w | |
dc.identifier.issn | 1573-269X | |
dc.identifier.issn | 0924-090X | |
dc.identifier.scopus | 2-s2.0-85084981056 | |
dc.identifier.uri | http://hdl.handle.net/11449/198854 | |
dc.language.iso | eng | |
dc.relation.ispartof | Nonlinear Dynamics | |
dc.source | Scopus | |
dc.subject | Chaos | |
dc.subject | Piecewise smooth vector fields | |
dc.subject | Prey switching model | |
dc.subject | Shilnikov connection | |
dc.subject | Sliding dynamics | |
dc.title | Sliding Shilnikov connection in Filippov-type predator–prey model | en |
dc.type | Artigo | |
unesp.author.orcid | 0000-0003-3927-938X[1] | |
unesp.author.orcid | 0000-0002-9147-8442[2] | |
unesp.author.orcid | 0000-0003-3653-6395[3] |