Sliding Shilnikov connection in Filippov-type predator–prey model

dc.contributor.authorCarvalho, Tiago
dc.contributor.authorDuarte Novaes, Douglas
dc.contributor.authorGonçalves, Luiz Fernando [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T01:23:47Z
dc.date.available2020-12-12T01:23:47Z
dc.date.issued2020-05-01
dc.description.abstractRecently, a piecewise smooth differential system was derived as a model of a 1 predator–2 prey interaction where the predator feeds adaptively on its preferred prey and an alternative prey. In such a model, strong evidence of chaotic behavior was numerically found. Here, we revisit this model and prove the existence of a Shilnikov sliding connection when the parameters are taken in a codimension one submanifold of the parameter space. As a consequence of this connection, we conclude, analytically, that the model behaves chaotically for an open region of the parameter space.en
dc.description.affiliationDepartamento de Computação e Matemática Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo, Av. Bandeirantes, 3900
dc.description.affiliationDepartamento de Matemática Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda 651, Cidade Universitária Zeferino Vaz
dc.description.affiliationInstituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265
dc.description.affiliationUnespInstituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2017/00883-0
dc.description.sponsorshipIdFAPESP: 2018/13481-0
dc.description.sponsorshipIdFAPESP: 2018/16430-8
dc.description.sponsorshipIdFAPESP: 2019/10269-3
dc.description.sponsorshipIdCNPq: 306649/2018-7
dc.description.sponsorshipIdCNPq: 438975/2018-9
dc.description.sponsorshipIdCAPES: Finance Code 001
dc.format.extent2973-2987
dc.identifierhttp://dx.doi.org/10.1007/s11071-020-05672-w
dc.identifier.citationNonlinear Dynamics, v. 100, n. 3, p. 2973-2987, 2020.
dc.identifier.doi10.1007/s11071-020-05672-w
dc.identifier.issn1573-269X
dc.identifier.issn0924-090X
dc.identifier.scopus2-s2.0-85084981056
dc.identifier.urihttp://hdl.handle.net/11449/198854
dc.language.isoeng
dc.relation.ispartofNonlinear Dynamics
dc.sourceScopus
dc.subjectChaos
dc.subjectPiecewise smooth vector fields
dc.subjectPrey switching model
dc.subjectShilnikov connection
dc.subjectSliding dynamics
dc.titleSliding Shilnikov connection in Filippov-type predator–prey modelen
dc.typeArtigo
unesp.author.orcid0000-0003-3927-938X[1]
unesp.author.orcid0000-0002-9147-8442[2]
unesp.author.orcid0000-0003-3653-6395[3]

Arquivos

Coleções