Disturbance detection for optimal database storage in electrical distribution systems using artificial immune systems with negative selection

dc.contributor.authorLima, Fernando P. A. [UNESP]
dc.contributor.authorLotufo, Anna D. P. [UNESP]
dc.contributor.authorMinussi, Carlos R. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-12-03T13:11:50Z
dc.date.available2014-12-03T13:11:50Z
dc.date.issued2014-04-01
dc.description.abstractThis paper presents the development of an intelligent system named normal pass filter to generate a disturbance database in electrical distribution systems. This is a system that aims to extract examples (and proper registration) of real disturbances from voltage and current measurements that are available by SCADA system. This filter is developed based on negative-selection artificial immune systems. The negative selection algorithm of an immune system is used to determine the presence of abnormalities. If an abnormality is detected, the system records the abnormal signal in a database. This database is a set of disturbance examples (e.g., harmonic, sag, high-impedance fault) for use in many purposes, for example, for training artificial neural networks for intelligent fault diagnosis and prognosis of electrical distribution systems. Recently, these diagnosis systems have been emphasized, particularly in smart grid environments. To exemplify the efficiency of the method, two electrical distribution systems with 33, and 134 busses were examined. (C) 2013 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 11/06394-5
dc.format.extent54-62
dc.identifierhttp://dx.doi.org/10.1016/j.epsr.2013.12.010
dc.identifier.citationElectric Power Systems Research. Lausanne: Elsevier Science Sa, v. 109, p. 54-62, 2014.
dc.identifier.doi10.1016/j.epsr.2013.12.010
dc.identifier.issn0378-7796
dc.identifier.urihttp://hdl.handle.net/11449/113617
dc.identifier.wosWOS:000332496700006
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofElectric Power Systems Research
dc.relation.ispartofjcr2.856
dc.relation.ispartofsjr1,048
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectFilteren
dc.subjectAnomaly detectionen
dc.subjectElectrical distribution systemsen
dc.subjectArtificial immune systemsen
dc.titleDisturbance detection for optimal database storage in electrical distribution systems using artificial immune systems with negative selectionen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.author.lattes6022112355517660[2]
unesp.author.lattes7166279400544764[3]
unesp.author.orcid0000-0002-0192-2651[2]
unesp.author.orcid0000-0001-6428-4506[3]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos