Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

WRONSKIANS OF FOURIER AND LAPLACE TRANSFORMS

Nenhuma Miniatura disponível

Data

2019-09-15

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Amer Mathematical Soc

Tipo

Artigo

Direito de acesso

Resumo

Associated with a given suitable function, or a measure, on R, we introduce a correlation function so that the Wronskian of the Fourier transform of the function is the Fourier transform of the corresponding correlation function, and the same holds for the Laplace transform. We obtain two types of results. First, we show that Wronskians of the Fourier transform of a non-negative function on R are positive definite functions and that the Wronskians of the Laplace transform of a nonnegative function on R+ are completely monotone functions. Then we establish necessary and sufficient conditions in order that a real entire function, defined as a Fourier transform of a positive kernel K, belongs to the Laguerre-Polya class, which answers an old question of Polya. The characterization is given in terms of a density property of the correlation kernel related to K, via classical results of Laguerre and Jensen and employing Wiener's L-1 Tauberian theorem. As a consequence, we provide a necessary and sufficient condition for the Riemann hypothesis in terms of a density of the translations of the correlation function related to the Riemann xi-function.

Descrição

Idioma

Inglês

Como citar

Transactions Of The American Mathematical Society. Providence: Amer Mathematical Soc, v. 372, n. 6, p. 4107-4125, 2019.

Itens relacionados