The dual role of the surface oxophilicity in the electro-oxidation of ethanol on nanostructured Pd/C in alkaline media

Nenhuma Miniatura disponível

Data

2021-08-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The ability of a surface to interact with oxygen (oxophilicity) plays a very important role in several catalytic, electroanalytic and electrocatalytic reactions. To date, however, the role of the oxophilicity in the electrochemical oxidation of ethanol was never shown for pure nanostructured Pd electrocatalysts supported on carbon, a promising material to be used as a non-enzymatic amperometric sensors for ethanol and also as an electrocatalyst for the Direct Ethanol Fuel Cells. In this work, Pd nanoparticles were prepared by chemical reduction at room temperature in the presence of varying amounts of sodium citrate in order to produce particles with distinct sizes. Then, we used cyclic voltammetry in 0.1 mol L-1 KOH to obtain an oxophilicity trend among various nanostructured Pd/C samples. The oxidation of ethanol in alkaline media demonstrated that the surface oxophilicity has a dual role in the kinetics of the reaction: a promoter at low and medium oxygen coverages, and a spectator (inhibitor) species at high surface coverages. Thus, by a proper control of the surface oxophilicity the current density at a constant potential can be enhanced by 57%, highlighting the importance of that parameter in the electro-oxidation on ethanol on Pd-based materials. Our results have a great impact for the design of more active non-enzymatic ethanol sensors and also for the development of more active electrocatalysts for Direct Ethanol Fuel Cells.

Descrição

Idioma

Inglês

Como citar

Journal of Electroanalytical Chemistry, v. 894.

Itens relacionados

Financiadores

Coleções