Graphene healing mechanisms: A theoretical investigation

dc.contributor.authorBotari, Tiago
dc.contributor.authorPaupitz, Ricardo [UNESP]
dc.contributor.authorAlves Da Silva Autreto, Pedro
dc.contributor.authorGalvao, Douglas S.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T16:41:15Z
dc.date.available2018-12-11T16:41:15Z
dc.date.issued2016-04-01
dc.description.abstractLarge holes in graphene membranes were recently shown to heal, either at room temperature during a low energy STEM experiment, or by annealing at high temperatures. However, the details of the healing mechanism remain unclear. We carried out fully atomistic reactive molecular dynamics simulations in order to address these mechanisms under different experimental conditions. Our results show that, if a carbon atom source is present, high temperatures can provide enough energy for the carbon atoms to overcome the potential energy barrier and to produce perfect reconstruction of the graphene hexagonal structure. At room temperature, this perfect healing is only possible if the heat effects of the electron beam from STEM experiment are explicitly taken into account. The reconstruction process of a perfect or near perfect graphene structure involves the formation of linear carbon chains, as well as rings containing 5, 6, 7 and 8 atoms with planar (Stone-Wales like) and non-planar (lump like) structures. These results shed light on the healing mechanism of graphene when subjected to different experimental conditions. Additionally, the methodology presented here can be useful for investigating the tailoring and manipulations of other nano-structures.en
dc.description.affiliationApplied Physics Department State University of Campinas (UNICAMP)
dc.description.affiliationPhysics Department Univ. Estadual Paulista (UNESP)
dc.description.affiliationUnespPhysics Department Univ. Estadual Paulista (UNESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2014/15521-9
dc.format.extent302-309
dc.identifierhttp://dx.doi.org/10.1016/j.carbon.2015.11.070
dc.identifier.citationCarbon, v. 99, p. 302-309.
dc.identifier.doi10.1016/j.carbon.2015.11.070
dc.identifier.file2-s2.0-84959358506.pdf
dc.identifier.issn0008-6223
dc.identifier.scopus2-s2.0-84959358506
dc.identifier.urihttp://hdl.handle.net/11449/168434
dc.language.isoeng
dc.relation.ispartofCarbon
dc.relation.ispartofsjr2,226
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectReactive potential
dc.subjectScanning electron microscopy
dc.subjectSelf-healing
dc.subjectVacancies
dc.titleGraphene healing mechanisms: A theoretical investigationen
dc.typeArtigo

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84959358506.pdf
Tamanho:
2.49 MB
Formato:
Adobe Portable Document Format
Descrição:

Coleções