Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Normalizing images is good to improve computer-assisted COVID-19 diagnosis

dc.contributor.authorSantos, Claudio Filipi Gonçalvesdos
dc.contributor.authorPassos, Leandro Aparecido [UNESP]
dc.contributor.authorSantana, Marcos Cleisonde [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-05-01T15:46:18Z
dc.date.available2022-05-01T15:46:18Z
dc.date.issued2021-01-01
dc.description.abstractThe Coronavirus Disease 2019 (COVID-19) outbreak, caused by the SARS-CoV-2 virus, surprised the whole world in an unprecedented and devastating way, resulting in almost deaths and 2.3 million infections worldwide in less than 4 months. Moreover, the elevate capability of transmission threatens to collapse both the healthy and economic systems from most countries, stressing worse predictions for emerging countries. In such a turbulent scenario, fast diagnosis is essential for a successful treatment and isolation of patients, thus avoiding increasing the number of contaminations. However, traditional methods of detection using polymerase chain reaction are impractical in large scale due to elevate costs, material scarcity, and time demanded for processing. As an alternative, some researchers proposed a machine learning-based diagnosis considering chest X-ray analysis with promising results, thus opening room for possible improvements. This work introduces a different normalization approach that, together with an EfficientNet-B6-inspired neural network, can deal with COVID-19 diagnosis considering chest X-ray images. Experiments provided competitive results considering a lighter and faster architecture, thus fostering research toward COVID-19 detection.en
dc.description.affiliationDepartment of Computing Federal University of São Carlos
dc.description.affiliationDepartment of Computing São Paulo State University
dc.description.affiliationUnespDepartment of Computing São Paulo State University
dc.format.extent51-62
dc.identifierhttp://dx.doi.org/10.1016/B978-0-12-824536-1.00033-2
dc.identifier.citationData Science for COVID-19 Volume 1: Computational Perspectives, p. 51-62.
dc.identifier.doi10.1016/B978-0-12-824536-1.00033-2
dc.identifier.scopus2-s2.0-85126913352
dc.identifier.urihttp://hdl.handle.net/11449/234306
dc.language.isoeng
dc.relation.ispartofData Science for COVID-19 Volume 1: Computational Perspectives
dc.sourceScopus
dc.subjectConvolutional neural network
dc.subjectCoronavirus
dc.subjectCOVID-19
dc.titleNormalizing images is good to improve computer-assisted COVID-19 diagnosisen
dc.typeCapítulo de livro
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos