Isothermal structural evolution of SnO2 monolithic porous xerogels

dc.contributor.authorBrito, GES
dc.contributor.authorPulcinelli, Sandra Helena [UNESP]
dc.contributor.authorSantilli, Celso Valentim [UNESP]
dc.contributor.authorCraievich, A. F.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Paris Sud
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2014-05-20T15:25:42Z
dc.date.available2014-05-20T15:25:42Z
dc.date.issued1997-10-01
dc.description.abstractMonolithic samples of SnO2 xerogel were produced by careful control of the gelation and drying steps of material preparation. In these samples, small and nanoporous aggregates stick together, yielding a monolithic (nonpowdered) material. The material was analyzed by in situ small-angle X-ray scattering (SAXS) during isothermal treatment at temperatures ranging from 473 to 773 K. At 473 K, the SAXS intensity does not change significantly with time. All experimental scattering intensity functions for T > 473 K are composed of two wide peaks, which evolve with increasing time. Each of them was associated with one of the modes of a bimodal distribution of pore sizes corresponding to a fine (intra-aggregate) and a coarse (inter-aggregate) porosity. The SAXS intensities of the maxima of both peaks increase with increasing treatment time, while the position of their maxima, associated with an average correlation distance, decreases. The time dependences of the SAXS intensity corresponding to both families of pores qualitatively agree with those expected for a two-phase separating system exhibiting dynamic scaling properties. The time evolutions of the several moments of the structure function of samples heat treated at 773 K exhibit a good quantitative agreement with the theory of dynamic scaling for systems evolving by a coagulation mechanism. The kinetic parameters are the same for both peaks, indicating that the same mechanism is responsible for the structural evolution of both families of pores.en
dc.description.affiliationUNESP, Inst Chem, Araraquara, SP, Brazil
dc.description.affiliationUniv Paris Sud, LURE, Orsay, France
dc.description.affiliationCNPq, Natl Synchrotron Light Lab, Campinas, SP, Brazil
dc.description.affiliationUniv São Paulo, Inst Phys, São Paulo, Brazil
dc.description.affiliationUnespUNESP, Inst Chem, Araraquara, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent664-669
dc.identifierhttp://dx.doi.org/10.1107/S0021889897002434
dc.identifier.citationJournal of Applied Crystallography. Copenhagen: Munksgaard Int Publ Ltd, v. 30, n. 2, p. 664-669, 1997.
dc.identifier.doi10.1107/S0021889897002434
dc.identifier.fileWOS000071640900021.pdf
dc.identifier.issn0021-8898
dc.identifier.lattes9971202585286967
dc.identifier.lattes5584298681870865
dc.identifier.orcid0000-0002-8356-8093
dc.identifier.urihttp://hdl.handle.net/11449/36065
dc.identifier.wosWOS:000071640900021
dc.language.isoeng
dc.publisherMunksgaard Int Publ Ltd
dc.relation.ispartofJournal of Applied Crystallography
dc.relation.ispartofsjr1,635
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.titleIsothermal structural evolution of SnO2 monolithic porous xerogelsen
dc.typeArtigo
dcterms.licensehttp://journals.iucr.org/services/copyrightpolicy.html
dcterms.rightsHolderMunksgaard Int Publ Ltd
unesp.author.lattes9971202585286967
unesp.author.lattes5584298681870865[3]
unesp.author.orcid0000-0002-8356-8093[3]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Química, Araraquarapt
unesp.departmentFísico-Química - IQARpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000071640900021.pdf
Tamanho:
619.4 KB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: