Algebraic integers of pure sextic extensions

dc.contributor.authorde Andrade, Antonio Aparecido [UNESP]
dc.contributor.authorFacini, Linara Stéfani [UNESP]
dc.contributor.authorEsteves, Livea Cichito [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T13:47:29Z
dc.date.available2023-07-29T13:47:29Z
dc.date.issued2022-01-01
dc.description.abstractLet K = Q(θ), where (Formula Presented), be a pure sextic field with d ≠ 1 a square free integer. In this paper, we characterize completely whether {1, θ,…, θ5} is an integral basis of K or do not. When d ≢ ±1,±17,±10,−15,−11,−7,−3, 5, 13(mod 36) we prove that K has a power integral basis. Furthermore, for the other cases we present an integral basisen
dc.description.affiliationDepartment of Mathematics S˜ao Paulo State University (Unesp) Institute of Biosciences Humanites and Exact Sciences (Ibilce) Campus S˜ao José do Rio Preto
dc.description.affiliationUnespDepartment of Mathematics S˜ao Paulo State University (Unesp) Institute of Biosciences Humanites and Exact Sciences (Ibilce) Campus S˜ao José do Rio Preto
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2013/25977-7
dc.format.extent112-124
dc.identifier.citationJournal of Prime Research in Mathematics, v. 18, n. 2, p. 112-124, 2022.
dc.identifier.issn1818-5495
dc.identifier.issn1817-3462
dc.identifier.scopus2-s2.0-85150884030
dc.identifier.urihttp://hdl.handle.net/11449/248567
dc.language.isoeng
dc.relation.ispartofJournal of Prime Research in Mathematics
dc.sourceScopus
dc.subjectAlgebraic number field
dc.subjectalgebraic number integer
dc.subjectpure sextic extension
dc.titleAlgebraic integers of pure sextic extensionsen
dc.typeArtigo
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos