Algebraic integers of pure sextic extensions
dc.contributor.author | de Andrade, Antonio Aparecido [UNESP] | |
dc.contributor.author | Facini, Linara Stéfani [UNESP] | |
dc.contributor.author | Esteves, Livea Cichito [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2023-07-29T13:47:29Z | |
dc.date.available | 2023-07-29T13:47:29Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | Let K = Q(θ), where (Formula Presented), be a pure sextic field with d ≠ 1 a square free integer. In this paper, we characterize completely whether {1, θ,…, θ5} is an integral basis of K or do not. When d ≢ ±1,±17,±10,−15,−11,−7,−3, 5, 13(mod 36) we prove that K has a power integral basis. Furthermore, for the other cases we present an integral basis | en |
dc.description.affiliation | Department of Mathematics S˜ao Paulo State University (Unesp) Institute of Biosciences Humanites and Exact Sciences (Ibilce) Campus S˜ao José do Rio Preto | |
dc.description.affiliationUnesp | Department of Mathematics S˜ao Paulo State University (Unesp) Institute of Biosciences Humanites and Exact Sciences (Ibilce) Campus S˜ao José do Rio Preto | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 2013/25977-7 | |
dc.format.extent | 112-124 | |
dc.identifier.citation | Journal of Prime Research in Mathematics, v. 18, n. 2, p. 112-124, 2022. | |
dc.identifier.issn | 1818-5495 | |
dc.identifier.issn | 1817-3462 | |
dc.identifier.scopus | 2-s2.0-85150884030 | |
dc.identifier.uri | http://hdl.handle.net/11449/248567 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Prime Research in Mathematics | |
dc.source | Scopus | |
dc.subject | Algebraic number field | |
dc.subject | algebraic number integer | |
dc.subject | pure sextic extension | |
dc.title | Algebraic integers of pure sextic extensions | en |
dc.type | Artigo | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |