Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: The role of electrolyte concentration and treatment duration

Nenhuma Miniatura disponível

Data

2015

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

AVS: Science & Technology of Materials, Interfaces, and Processing

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The objectives of the present study were to produce bioactive coatings in solutions containing Ca, P, and Si by plasma electrolytic oxidation (PEO) on commercially pure titanium, to investigate the influence of different electrolytes concentration and treatment duration on the produced anodic films and to evaluate biocompatibility properties. The anodic films were characterized using scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy, and x-ray diffraction and x-ray photoelectron spectroscopies. The surface energy and roughness were also evaluated. PEO process parameters influenced the crystalline structure formation and surface topography of the anodic films. Higher Ca content produced larger porous (volcanolike appearance) and thicker oxide layers when compared to the lower content. Treatment duration did not produce any topography difference. The treatment modified the surface chemistry, producing an enriched oxide layer with bioactive elements in the form of phosphate compounds, which may be responsible for mimicking bone surface. In addition, a rough surface with increased surface energy was generated. Optimal spreading and proliferation of human mesenchymal stem cells was achieved by PEO treatment, demonstrating excellent biocompatibility of the surface. The main finding is that the biofunctionalization with higher Ca/P on Ti-surface can improve surface features, potentially considered as a candidate for dental implants.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Biointerphases, v. 10, n. 4, p. 1-11, 2015.

Itens relacionados