Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals
Nenhuma Miniatura disponível
Data
2012-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Royal Soc Chemistry
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
In this paper, aggregated CaWO4 micro-and nanocrystals were synthesized by the co-precipitation method and processed under microwave-assisted hydrothermal/solvothermal conditions (160 degrees C for 30 min). According to the X-ray patterns, all crystals exhibited only the scheelite-type tetragonal structure. The data obtained by the Rietveld refinements revealed that the oxygen atoms occupy different positions in the [WO4] clusters, suggesting the presence of lattice distortions. The crystal shapes as well as its crystallographic orientations were identified by field-emission scanning electron microscopy and high-resolution transmission electron microcopy. Electronic structures of these crystals were evaluated by the first-principles quantum mechanical calculations based on the density functional theory in the B3LYP level. A good correlation was found between the experimental and theoretical Raman and infrared-active modes. A crystal growth mechanism was proposed to explain the morphological evolution. The ultraviolet-visible absorption spectra indicated the existence of intermediary energy levels within the band gap. The highest blue photoluminescence emission, lifetime and quantum yield were observed for the nanocrystals processed in the microwave-assisted solvothermal method.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Crystengcomm. Cambridge: Royal Soc Chemistry, v. 14, n. 3, p. 853-868, 2012.