Yang-Lee zeros of the two- and three-state Potts model defined on [Formula presented] Feynman diagrams

Nenhuma Miniatura disponível

Data

2003-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the [Formula presented] state (Ising) and the [Formula presented] state Potts model defined on [Formula presented] Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the [Formula presented] state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations. © 2003 The American Physical Society.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 67, n. 6, p. 7-, 2003.

Itens relacionados

Financiadores