Yang-Lee zeros of the two- and three-state Potts model defined on [Formula presented] Feynman diagrams
Nenhuma Miniatura disponível
Data
2003-01-01
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the [Formula presented] state (Ising) and the [Formula presented] state Potts model defined on [Formula presented] Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the [Formula presented] state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations. © 2003 The American Physical Society.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 67, n. 6, p. 7-, 2003.