On the denominator values and barycentric weights of rational interpolants

Carregando...
Imagem de Miniatura

Data

2007-03-15

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

We improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341-348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole. (c) 2006 Elsevier B.V. All rights reserved.

Descrição

Idioma

Inglês

Como citar

Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 200, n. 2, p. 576-590, 2007.

Itens relacionados

Financiadores