Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking

dc.contributor.authorGuimaraes Pedronette, Daniel Carlos [UNESP]
dc.contributor.authorValem, Lucas Pascotti [UNESP]
dc.contributor.authorAlmeida, Jurandy
dc.contributor.authorTones, Ricardo da S.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Paulo (UNIFESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2019-10-04T12:41:35Z
dc.date.available2019-10-04T12:41:35Z
dc.date.issued2019-12-01
dc.description.abstractAccurately ranking images and multimedia objects are of paramount relevance in many retrieval and learning tasks. Manifold learning methods have been investigated for ranking mainly due to their capacity of taking into account the intrinsic global manifold structure. In this paper, a novel manifold ranking algorithm is proposed based on the hypergraphs for unsupervised multimedia retrieval tasks. Different from traditional graph-based approaches, which represent only pairwise relationships, hypergraphs are capable of modeling similarity relationships among a set of objects. The proposed approach uses the hyperedges for constructing a contextual representation of data samples and exploits the encoded information for deriving a more effective similarity function. An extensive experimental evaluation was conducted on nine public datasets including diverse retrieval scenarios and multimedia content. Experimental results demonstrate that high effectiveness gains can be obtained in comparison with the state-of-the-art methods.en
dc.description.affiliationState Univ Sao Paulo, Dept Stat Appl Maths & Comp, BR-13506900 Rio Claro, Brazil
dc.description.affiliationUniv Fed Sao Paulo, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, RECOD Lab, BR-13083852 Campinas, SP, Brazil
dc.description.affiliationUnespState Univ Sao Paulo, Dept Stat Appl Maths & Comp, BR-13506900 Rio Claro, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2018/15597-6
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.description.sponsorshipIdFAPESP: 2017/02091-4
dc.description.sponsorshipIdFAPESP: 2017/20945-0
dc.description.sponsorshipIdFAPESP: 2016/06441-7
dc.description.sponsorshipIdFAPESP: 2015/24494-8
dc.description.sponsorshipIdFAPESP: 2016/50250-1
dc.description.sponsorshipIdFAPESP: 2013/50155-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2014/50715-9
dc.description.sponsorshipIdCNPq: 423228/2016-1
dc.description.sponsorshipIdCNPq: 307560/2016-3
dc.description.sponsorshipIdCNPq: 308194/2017-9
dc.description.sponsorshipIdCNPq: 313122/2017-2
dc.description.sponsorshipIdCAPES: 001
dc.format.extent5824-5838
dc.identifierhttp://dx.doi.org/10.1109/TIP.2019.2920526
dc.identifier.citationIeee Transactions On Image Processing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 5824-5838, 2019.
dc.identifier.doi10.1109/TIP.2019.2920526
dc.identifier.issn1057-7149
dc.identifier.urihttp://hdl.handle.net/11449/186137
dc.identifier.wosWOS:000484306000006
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Transactions On Image Processing
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectMultimedia
dc.subjectretrieval
dc.subjectranking
dc.subjectunsupervised
dc.subjectmanifold
dc.subjecthypergraph
dc.titleMultimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Rankingen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc

Arquivos