The rolling ball problem on the plane revisited
Nenhuma Miniatura disponível
Data
2013-08-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
By a sequence of rollings without slipping or twisting along segments of a straight line of the plane, a spherical ball of unit radius has to be transferred from an initial state to an arbitrary final state taking into account the orientation of the ball. We provide a new proof that with at most 3 moves, we can go from a given initial state to an arbitrary final state. The first proof of this result is due to Hammersley ( 1983). His proof is more algebraic than ours which is more geometric. We also showed that generically no one of the three moves, in any elimination of the spin discrepancy, may have length equal to an integral multiple of 2 pi.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Zeitschrift Fur Angewandte Mathematik Und Physik. Basel: Springer Basel Ag, v. 64, n. 4, p. 991-1003, 2013.