The Mesoscopic Electrochemistry of Molecular Junctions

dc.contributor.authorBueno, Paulo R. [UNESP]
dc.contributor.authorBenites, Tiago A. [UNESP]
dc.contributor.authorDavis, Jason J.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Oxford
dc.date.accessioned2018-11-26T16:19:14Z
dc.date.available2018-11-26T16:19:14Z
dc.date.issued2016-01-13
dc.description.abstractWithin the context of an electron dynamic (time-dependent) perspective and a voltage driving force acting to redistribute electrons between metallic and addressable molecular states, we define here the associated electron admittance and conductance. We specifically present a mesoscopic approach to resolving the electron transfer rate associated with the electrochemistry of a redox active film tethered to metallic leads and immersed in electrolyte. The methodology is centred on aligning the lifetime of the process of electron exchange with associated resistance and capacitance quantities. Notably, however, these are no longer those empirically known as charge transfer resistance and pseudo-capacitance, but are those derived instead from a consideration of the quantum states contained in molecular films and their accessibility through a scattering region existing between them and the metallic probe. The averaged lifetime (tau(r)) associated with the redox site occupancy is specifically dependent on scattering associated with the quantum channels linking them to the underlying metallic continuum and associated with both a quantum resistance (R-q) and an electrochemical (redox) capacitance (C-r). These are related to electron transfer rate through kappa= 1/tau(r) = (RqCr)(- 1). The proposed mesoscopic approach is consistent with Marcus's ( electron transfer rate) theory and experimental measurements obtained by capacitance spectroscopy.en
dc.description.affiliationSao Paulo State Univ, Inst Chem, Dept Phys Chem, Univ Estadual Paulista,UNESP,Nanob Grp, BR-14800900 Sao Paulo, Brazil
dc.description.affiliationUniv Oxford, Dept Chem, Oxford OX1 3QZ, England
dc.description.affiliationUnespSao Paulo State Univ, Inst Chem, Dept Phys Chem, Univ Estadual Paulista,UNESP,Nanob Grp, BR-14800900 Sao Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent11
dc.identifierhttp://dx.doi.org/10.1038/srep18400
dc.identifier.citationScientific Reports. London: Nature Publishing Group, v. 6, 11 p., 2016.
dc.identifier.doi10.1038/srep18400
dc.identifier.fileWOS000368095700001.pdf
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/11449/161126
dc.identifier.wosWOS:000368095700001
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofScientific Reports
dc.relation.ispartofsjr1,533
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleThe Mesoscopic Electrochemistry of Molecular Junctionsen
dc.typeArtigo
dcterms.rightsHolderNature Publishing Group
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Química, Araraquarapt
unesp.departmentFísico-Química - IQARpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000368095700001.pdf
Tamanho:
1.39 MB
Formato:
Adobe Portable Document Format
Descrição: