Publicação: Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
A simple, fast, and efficient spark discharge-laser-induced breakdown spectroscopy (SD-LIBS) method was developed for determining rice botanic origin using predictive modeling based on support vector machine (SVM). Seventy-two samples from four rice varieties (Guri, Irga 424, Puitá, and Taim) were analyzed by SD-LIBS. Spectral lines of C, Ca, Fe, Mg, N and Na were selected as input variables for prediction model fitting. The SVM algorithm parameters were optimized using a central composite design (CCD) to find the better classification performance. The optimum model for discriminating rice samples according to their botanical variety was obtained using C = 5.25 and γ = 0.119. This model achieved 96.4% of correct predictions in test samples and showed sensitivities and specificities per class within the range of 92–100%. The developed method is robust and eco-friendly for rice botanic identification since its prediction results are consistent and reproducible and its application does not generate chemical waste.
Descrição
Palavras-chave
Botanical origin, Rice, SD-LIBS, Support vector machine
Idioma
Inglês
Como citar
Food Chemistry, v. 331.