AN EFFICIENT ALGORITHM FOR THE CLASSICAL LEAST SQUARES APPROXIMATION

Nenhuma Miniatura disponível

Data

2020-01-01

Autores

Dimitrov, Dimitar K. [UNESP]
Peixoto, Lourenco L.

Título da Revista

ISSN da Revista

Título de Volume

Editor

Siam Publications

Resumo

We explore the computational issues concerning a new algorithm for the classical least-squares approximation of N samples by an algebraic polynomial of degree at most n when the number N of the samples is very large. The algorithm is based on a recent idea about accurate numerical approximations of sums with large numbers of terms. For a fixed n, the complexity of our algorithm in double precision accuracy is O(1). It is faster and more precise than the standard algorithm in MATLAB.

Descrição

Palavras-chave

least squares approximation, Gaussian quadrature, orthogonal Gram polynomials, WDDK method, Newton-Raphson method, Golub-Welsch algorithm

Como citar

Siam Journal On Scientific Computing. Philadelphia: Siam Publications, v. 42, n. 5, p. A3233-A3249, 2020.