Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study

dc.contributor.authorCatelani, Tiago A. [UNESP]
dc.contributor.authorSantos, João Rodrigo
dc.contributor.authorPáscoa, Ricardo N.M.J.
dc.contributor.authorPezza, Leonardo [UNESP]
dc.contributor.authorPezza, Helena R. [UNESP]
dc.contributor.authorLopes, João A.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade do Porto
dc.contributor.institutionUniversidade de Lisboa
dc.date.accessioned2018-12-11T17:34:54Z
dc.date.available2018-12-11T17:34:54Z
dc.date.issued2018-03-01
dc.description.abstractThis work proposes the use of near infrared (NIR) spectroscopy in diffuse reflectance mode and multivariate statistical process control (MSPC) based on principal component analysis (PCA) for real-time monitoring of the coffee roasting process. The main objective was the development of a MSPC methodology able to early detect disturbances to the roasting process resourcing to real-time acquisition of NIR spectra. A total of fifteen roasting batches were defined according to an experimental design to develop the MSPC models. This methodology was tested on a set of five batches where disturbances of different nature were imposed to simulate real faulty situations. Some of these batches were used to optimize the model while the remaining was used to test the methodology. A modelling strategy based on a time sliding window provided the best results in terms of distinguishing batches with and without disturbances, resourcing to typical MSPC charts: Hotelling's T2 and squared predicted error statistics. A PCA model encompassing a time window of four minutes with three principal components was able to efficiently detect all disturbances assayed. NIR spectroscopy combined with the MSPC approach proved to be an adequate auxiliary tool for coffee roasters to detect faults in a conventional roasting process in real-time.en
dc.description.affiliationInstituto de Química Universidade Estadual Paulista “Julio de Mesquita Filho” UNESP, R. Prof. Francisco Degni 55, P.O. Box 355
dc.description.affiliationLAQV/REQUIMTE - Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto
dc.description.affiliationLAQV/REQUIMTE Laboratório de Química Aplicada Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto
dc.description.affiliationResearch Institute for Medicines (iMed.ULisboa) Faculdade de Farmácia Universidade de Lisboa
dc.description.affiliationUnespInstituto de Química Universidade Estadual Paulista “Julio de Mesquita Filho” UNESP, R. Prof. Francisco Degni 55, P.O. Box 355
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: #99999.000655/2015-05
dc.description.sponsorshipIdCNPq: SFRH/BPD/81384/2011
dc.format.extent292-299
dc.identifierhttp://dx.doi.org/10.1016/j.talanta.2017.11.010
dc.identifier.citationTalanta, v. 179, p. 292-299.
dc.identifier.doi10.1016/j.talanta.2017.11.010
dc.identifier.file2-s2.0-85034610548.pdf
dc.identifier.issn0039-9140
dc.identifier.lattes5978908591853524
dc.identifier.scopus2-s2.0-85034610548
dc.identifier.urihttp://hdl.handle.net/11449/179372
dc.language.isoeng
dc.relation.ispartofTalanta
dc.relation.ispartofsjr1,186
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectCoffee roasting
dc.subjectMultivariate statistical process control
dc.subjectNear-infrared spectroscopy
dc.subjectPrincipal component analysis
dc.subjectReal-time monitoring
dc.titleReal-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility studyen
dc.typeArtigo
unesp.author.lattes5978908591853524
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Química, Araraquarapt
unesp.departmentQuímica Orgânica - IQARpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85034610548.pdf
Tamanho:
1 MB
Formato:
Adobe Portable Document Format
Descrição: