Assessment of distributed generation hosting capacity of microgrids with thermal smart loads
Nenhuma Miniatura disponível
Data
2020-10-26
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
This paper seeks to explore the problem of assessing the renewable distributed generation (DG) hosting capacity of microgrids when thermal smart loads composed of electric water heaters (EWH) interfaced with electric springs (ES) are in place. ESs are positioned to dynamically adjust the power demand of EWHs to match the DG power generation while providing reactive power compensation. A biobjective optimization model is formulated to coordinate the operation of multiple ESs in a way that maximizes the amount of connected DG and simultaneously minimizes the energy losses and consumption of voltage dependent critical loads. The expected result is a set of non-dominated solutions that shows the compromise between DG hosting capacity and energy consumption, and the advantages of using ESs to achieve those objectives.
Descrição
Idioma
Inglês
Como citar
IEEE PES Innovative Smart Grid Technologies Conference Europe, v. 2020-October, p. 764-768.