Biological image classification using rough-fuzzy artificial neural network

dc.contributor.authorAffonso, Carlos [UNESP]
dc.contributor.authorSassi, Renato Jose
dc.contributor.authorBarreiros, Ricardo Marques [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionIndustrial Engineering Post Graduation, Universidade Nove de Julho, UNINOVE
dc.date.accessioned2018-12-11T17:25:46Z
dc.date.available2018-12-11T17:25:46Z
dc.date.issued2015-12-30
dc.description.abstractThis paper presents a methodology to biological image classification through a Rough-Fuzzy Artificial Neural Network (RFANN). This approach is used in order to improve the learning process by Rough Sets Theory (RS) focusing on the feature selection, considering that the RS feature selection allows the use of low dimension features from the image database. This result could be achieved, once the image features are characterized using membership functions and reduced it by Fuzzy Sets rules. The RS identifies the attributes relevance and the Fuzzy relations influence on the Artificial Neural Network (ANN) surface response. Thus, the features filtered by Rough Sets are used to train a Multilayer Perceptron Neuro Fuzzy Network. The reduction of feature sets reduces the complexity of the neural network structure therefore improves its runtime. To measure the performance of the proposed RFANN the runtime and training error were compared to the unreduced features.en
dc.description.affiliationDepartment of EIM, Universidade Julio de Mesquita Filho, UNESP
dc.description.affiliationIndustrial Engineering Post Graduation, Universidade Nove de Julho, UNINOVE
dc.description.affiliationUnespDepartment of EIM, Universidade Julio de Mesquita Filho, UNESP
dc.format.extent9482-9488
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2015.07.075
dc.identifier.citationExpert Systems with Applications, v. 42, n. 24, p. 9482-9488, 2015.
dc.identifier.doi10.1016/j.eswa.2015.07.075
dc.identifier.file2-s2.0-84942326149.pdf
dc.identifier.issn0957-4174
dc.identifier.lattes8792039758223621
dc.identifier.orcid0000-0002-0363-6800
dc.identifier.scopus2-s2.0-84942326149
dc.identifier.urihttp://hdl.handle.net/11449/177504
dc.language.isoeng
dc.relation.ispartofExpert Systems with Applications
dc.relation.ispartofsjr1,271
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectArtificial neural network
dc.subjectFeature selection
dc.subjectFuzzy sets
dc.subjectImage identification
dc.subjectRough sets
dc.titleBiological image classification using rough-fuzzy artificial neural networken
dc.typeArtigo
unesp.author.lattes0849551883568657[1]
unesp.author.lattes8792039758223621[3]
unesp.author.orcid0000-0002-0363-6800[3]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Ciências e Engenharia, Itapevapt
unesp.departmentEngenharia Industrial Madeireira - ICEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84942326149.pdf
Tamanho:
1.11 MB
Formato:
Adobe Portable Document Format
Descrição: