Transient analysis of multiphase transmission lines located above frequency-dependent soils
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
This paper evaluates the influence of frequency-dependent soil conductivity and permittiv-ity in the transient responses of single-and double-circuit transmission lines including the ground wires subjected to lightning strikes. We use Nakagawa’s approach to compute the ground-return impedance and admittance matrices where the frequency-dependent soil is modeled using Alípio and Visacro’s model. We compare some elements of these matrices with those calculated by Carson’s approach which assumes the frequency constant. Results show that a significant difference can be obtained in high resistive soils for these elements in impedance and admittance matrices. Then, we compute the transient responses for single-and double-circuit lines with ground wires located above soils of 500, 1000, 5000, and 10,000 Ω·m considering the frequency constant and frequency-dependent parameters generated for two lightning strikes (subsequent stroke and Gaussian pulse). We demonstrate that the inclusion of frequency dependence of soil results in an expressive reduction of approximately 26.15% and 42.75% in the generated voltage peaks in single-and double-circuit lines located above a high-resistive soil. These results show the impact of the frequency-dependent soils that must be considered for a precise transient analysis in power systems.
Descrição
Palavras-chave
Electromagnetic transient analysis, Ground-return admittance, Ground-return impedance, Lightning, Transmission lines
Idioma
Inglês
Citação
Energies, v. 14, n. 17, 2021.




