Position-dependent effective mass Dirac equations with PT-symmetric and non-PT-symmetric potentials

Nenhuma Miniatura disponível

Data

2006-09-22

Autores

Jia, Chun-Sheng
Dutra, Alvaro de Souza [UNESP]

Título da Revista

ISSN da Revista

Título de Volume

Editor

Iop Publishing Ltd

Resumo

We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.

Descrição

Palavras-chave

Como citar

Journal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 39, n. 38, p. 11877-11887, 2006.