Neural-network-based approach applied to harmonic component estimation in microgrids
Nenhuma Miniatura disponível
Data
2021-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
Power quality in smart microgrids must be carefully analyzed, whereas adverse consequences may harm the electrical systems without power management and appropriate measures. The main goal of this paper is to develop a 5th, 7th, 11th, and 13th voltage harmonic components identification method based on artificial neural network (ANN). This tool could provide information to the smart microgrid management and control system or be an alternative solution to the harmonic identification process of a harmonic compensator embededs into power converters. The trained algorithm can identify harmonic components amplitude and phase angle in the interfacing point between microgrid and power converters. it was possible to generate a voltage waveform with a maximum difference of 0.04 p.u. between the expected waveform and the one built with the parameters identified by ANN. The ANN method validation was performed through computer simulations.
Descrição
Idioma
Inglês
Como citar
2021 Brazilian Power Electronics Conference, COBEP 2021.