Publicação:
A Configurable Strategy for Extraction, Transformation and Load to Support Data Propagation on Active Data Warehouses

dc.contributor.authorValencio, Carlos Roberto [UNESP]
dc.contributor.authorNeto, Paulo Scarpelini [UNESP]
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authorDonega Zafalon, Geraldo Francisco [UNESP]
dc.contributor.authorGratao de Souza, Rogeria Cristiane [UNESP]
dc.contributor.authorColombini, Angelo Cesar
dc.contributor.authorShen, H.
dc.contributor.authorSang, Y.
dc.contributor.authorTian, H.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2018-11-28T13:17:40Z
dc.date.available2018-11-28T13:17:40Z
dc.date.issued2016-01-01
dc.description.abstractThis work consists of the construction of a strategy called ETL-PoCon to execute Extraction, Transformation and Load (ETL) processes in active Data Warehouses (DW) with a configurable policy. The original contribution of this work is to provide a strategy that considerably reduces the quantity of data transfers to active DW, besides maintaining a satisfactory level of data freshness. Said reduction is obtained by means of configurable policies of data propagation based on relevance of the data regarding to the information stored in the DW. The strategy was implemented in a database related to health worker that contains more than seventy thousand records of occupational accidents. Experiments have shown that the ETL-PoCon strategy significantly contributes towards a reduction of the overload on the systems involved in the active DW environment, since all results presented a reduction higher than 60% in the amount of DW refreshments.en
dc.description.affiliationSao Paulo State Univ UNESP, Dept Comp Sci & Stat, Sao Paulo, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp Sci & Stat, Sao Carlos, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Dept Comp Sci & Stat, Sao Paulo, Brazil
dc.format.extent204-209
dc.identifierhttp://dx.doi.org/10.1109/PDCAT.2016.52
dc.identifier.citation2016 17th International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat). New York: Ieee, p. 204-209, 2016.
dc.identifier.doi10.1109/PDCAT.2016.52
dc.identifier.lattes4644812253875832
dc.identifier.lattes2139053814879312
dc.identifier.orcid0000-0002-9325-3159
dc.identifier.urihttp://hdl.handle.net/11449/165634
dc.identifier.wosWOS:000403774200043
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2016 17th International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectdata warehouse
dc.subjectETL
dc.subjectactive data warehouse
dc.subjectnear real-time data warehouse
dc.titleA Configurable Strategy for Extraction, Transformation and Load to Support Data Propagation on Active Data Warehousesen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.lattes4644812253875832[1]
unesp.author.lattes2139053814879312
unesp.author.orcid0000-0002-9325-3159[1]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos