Monotonicity of zeros of Laguerre-Sobolev-type orthogonal polynomials
Nenhuma Miniatura disponível
Data
2010-08-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Academic Press Inc. Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Denote by x(n,k)(M,N)(alpha), k = 1, ..., n, the zeros of the Laguerre-Sobolev-type polynomials L(n)((alpha, M, N))(x) orthogonal with respect to the inner product< p, q > = 1/Gamma(alpha + 1) integral(infinity)(0)p(x)q(x)x(alpha)e(-x) dx + Mp(0)q(0) + Np'(0)q'(0),where alpha > -1, M >= 0 and N >= 0. We prove that x(n,k)(M,N)(alpha) interlace with the zeros of Laguerre orthogonal polynomials L(n)((alpha))(x) and establish monotonicity with respect to the parameters M and N of x(n,k)(M,0)(alpha) and x(n,k)(0,N)(alpha). Moreover, we find N(0) such that x(n,n)(M,N)(alpha) < 0 for all N > N(0), where x(n,n)(M,N)(alpha) is the smallest zero of L(n)((alpha, M, N))(x). Further, we present monotonicity and asymptotic relations of certain functions involving x(n,k)(M,0)(alpha) and x(n,k)(0,N)(alpha). (C) 2010 Elsevier B.V. All rights reserved.
Descrição
Idioma
Inglês
Como citar
Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 368, n. 1, p. 80-89, 2010.