On the stability of the satellites of asteroid 87 Sylvia


The triple asteroidal system (87) Sylvia is composed of a 280-km primary and two small moonlets named Romulus and Remus (Marchis et al. 2005b). Sylvia is located in the main asteroid belt, with semi-major axis of about 3.49 au, eccentricity of 0.08 and 11 degrees of orbital inclination. The satellites are in nearly equatorial circular orbits around the primary, with orbital radius of about 1360 km (Romulus) and 710 km (Remus). In this work, we study the stability of the satellites Romulus and Remus. In order to identify the effects and the contribution of each perturber, we performed numerical simulations considering a set of different systems. The results from the three-body problem, Sylvia-Romulus-Remus, show no significant variation of their orbital elements. However, the inclinations of the satellites present a long-period evolution with amplitude of about 20. when the Sun is included in the system. Such amplitude is amplified to more than 50. when Jupiter is included. These evolutions are very similar for both satellites. An analysis of these results shows that Romulus and Remus are librating in a secular resonance and their longitude of the nodes are locked to each other. Further simulations show that the amplitude of oscillation of the satellites' inclination can reach higher values depending on the initial values of their longitude of pericentre. In those cases, the satellites get caught in an evection resonance with Jupiter, their eccentricities grow and they eventually collide with Sylvia. However, the orbital evolutions of the satellites became completely stable when the oblateness of Sylvia is included in the simulations. The value of Sylvia's J(2) is about 0.17, which is very high. However, even just 0.1 per cent of this value is enough to keep the satellite's orbital elements with no significant variation.



celestial mechanics, minor planets, asteroids

Como citar

Monthly Notices of The Royal Astronomical Society. Malden: Wiley-blackwell Publishing, Inc, v. 395, n. 1, p. 218-227, 2009.