A model for anomaly classification in intrusion detection systems

dc.contributor.authorFerreira, V. O. [UNESP]
dc.contributor.authorGalhardi, V. V. [UNESP]
dc.contributor.authorGonçalves, L. B.L. [UNESP]
dc.contributor.authorSilva, R. C. [UNESP]
dc.contributor.authorCansian, A. M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:04:57Z
dc.date.available2018-12-11T17:04:57Z
dc.date.issued2015-09-21
dc.description.abstractIntrusion Detection Systems (IDS) are traditionally divided into two types according to the detection methods they employ, namely (i) misuse detection and (ii) anomaly detection. Anomaly detection has been widely used and its main advantage is the ability to detect new attacks. However, the analysis of anomalies generated can become expensive, since they often have no clear information about the malicious events they represent. In this context, this paper presents a model for automated classification of alerts generated by an anomaly based IDS. The main goal is either the classification of the detected anomalies in well-defined taxonomies of attacks or to identify whether it is a false positive misclassified by the IDS. Some common attacks to computer networks were considered and we achieved important results that can equip security analysts with best resources for their analyses.en
dc.description.affiliationDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP)
dc.description.affiliationUnespDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.identifierhttp://dx.doi.org/10.1088/1742-6596/633/1/012124
dc.identifier.citationJournal of Physics: Conference Series, v. 633, n. 1, 2015.
dc.identifier.doi10.1088/1742-6596/633/1/012124
dc.identifier.file2-s2.0-84983320539.pdf
dc.identifier.issn1742-6596
dc.identifier.issn1742-6588
dc.identifier.lattes0095921943345974
dc.identifier.orcid0000-0003-4494-1454
dc.identifier.scopus2-s2.0-84983320539
dc.identifier.urihttp://hdl.handle.net/11449/173388
dc.language.isoeng
dc.relation.ispartofJournal of Physics: Conference Series
dc.relation.ispartofsjr0,241
dc.relation.ispartofsjr0,241
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleA model for anomaly classification in intrusion detection systemsen
dc.typeTrabalho apresentado em evento
unesp.author.lattes0095921943345974[5]
unesp.author.orcid0000-0003-4494-1454[5]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84983320539.pdf
Tamanho:
1.15 MB
Formato:
Adobe Portable Document Format
Descrição: