A model for anomaly classification in intrusion detection systems
dc.contributor.author | Ferreira, V. O. [UNESP] | |
dc.contributor.author | Galhardi, V. V. [UNESP] | |
dc.contributor.author | Gonçalves, L. B.L. [UNESP] | |
dc.contributor.author | Silva, R. C. [UNESP] | |
dc.contributor.author | Cansian, A. M. [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-12-11T17:04:57Z | |
dc.date.available | 2018-12-11T17:04:57Z | |
dc.date.issued | 2015-09-21 | |
dc.description.abstract | Intrusion Detection Systems (IDS) are traditionally divided into two types according to the detection methods they employ, namely (i) misuse detection and (ii) anomaly detection. Anomaly detection has been widely used and its main advantage is the ability to detect new attacks. However, the analysis of anomalies generated can become expensive, since they often have no clear information about the malicious events they represent. In this context, this paper presents a model for automated classification of alerts generated by an anomaly based IDS. The main goal is either the classification of the detected anomalies in well-defined taxonomies of attacks or to identify whether it is a false positive misclassified by the IDS. Some common attacks to computer networks were considered and we achieved important results that can equip security analysts with best resources for their analyses. | en |
dc.description.affiliation | Department of Computer Science and Statistics (DCCE) São Paulo State University (UNESP) | |
dc.description.affiliationUnesp | Department of Computer Science and Statistics (DCCE) São Paulo State University (UNESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.identifier | http://dx.doi.org/10.1088/1742-6596/633/1/012124 | |
dc.identifier.citation | Journal of Physics: Conference Series, v. 633, n. 1, 2015. | |
dc.identifier.doi | 10.1088/1742-6596/633/1/012124 | |
dc.identifier.file | 2-s2.0-84983320539.pdf | |
dc.identifier.issn | 1742-6596 | |
dc.identifier.issn | 1742-6588 | |
dc.identifier.lattes | 0095921943345974 | |
dc.identifier.orcid | 0000-0003-4494-1454 | |
dc.identifier.scopus | 2-s2.0-84983320539 | |
dc.identifier.uri | http://hdl.handle.net/11449/173388 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Physics: Conference Series | |
dc.relation.ispartofsjr | 0,241 | |
dc.relation.ispartofsjr | 0,241 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.title | A model for anomaly classification in intrusion detection systems | en |
dc.type | Trabalho apresentado em evento | |
unesp.author.lattes | 0095921943345974[5] | |
unesp.author.orcid | 0000-0003-4494-1454[5] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-84983320539.pdf
- Tamanho:
- 1.15 MB
- Formato:
- Adobe Portable Document Format
- Descrição: