Apriori-Roaring-Parallel: Frequent pattern mining based on compressed bitmaps with OpenMP

Nenhuma Miniatura disponível

Data

2021-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Mining association rules is a process which consists in extracting knowledge from datasets. This is a widely used technique to analyze customer purchasing patterns, and its process is segmented in two main phases: mining frequent sets and formulating association rules. Several approaches were developed for the first phase of the mining process whose main objective was to reduce execution time. However, as all available datasets are very large (Big Data), there is a limitation regarding its application in these new sets due to excessive memory usage. We propose the Apriori-Roaring-Parallel which explores parallelism in shared memory and demands less memory usage during the mining process. In order to achieve this memory usage reduction, the Apriori-Roaring-Parallel method employs compressed bitmap structures to represent the datasets. The results obtained show that the Apriori-Roaring-Parallel method uses memory efficiently when compared to other methods.

Descrição

Idioma

Inglês

Como citar

Proceedings - IEEE Symposium on Computers and Communications, v. 2021-September.

Itens relacionados

Financiadores