Adaptive secure rate allocation via TAS/MRC under multi-antenna eavesdroppers
Nenhuma Miniatura disponível
Data
2019-08-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
This paper investigates the secrecy outage performance of a multiple-input multiple-output and multi-antenna eavesdropper system. We consider a novel formulation for the secrecy outage probability, which is capable of quantifying reliability and secrecy separately, thus constituting a useful tool in the context of new scenarios with stringent requirements on reliability as the case of ultra-reliable low-latency communication. Our system considers a multi-antenna transmitter, Alice, that employs transmit antenna selection, a legitimate multi-antenna receiver, Bob, and a multi-antenna eavesdropper, Eve, where both employing maximal-ratio combining. For this system, exact and simpler asymptotic closed-form expressions for the conditional outage probability are provided. Moreover, for the case where channel state information is available at the three nodes, a numerical secure throughput maximization is carried out by considering quality-of-service and security constraints for an adaptive rate allocation scheme in an ON-OFF transmission. Our proposed closed-form expressions are validated via Monte Carlo simulations.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Proceedings of the International Symposium on Wireless Communication Systems, v. 2019-August, p. 666-671.