Local Er(III) environment in luminescent titanosilicates prepared from microporous precursors

dc.contributor.authorRainho, J. P.
dc.contributor.authorPillinger, M.
dc.contributor.authorCarlos, L. D.
dc.contributor.authorRibeiro, SJL
dc.contributor.authorAlmeida, R. M.
dc.contributor.authorRocha, J.
dc.contributor.institutionUniv Aveiro
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInst Super Tecn
dc.date.accessioned2014-05-20T15:22:20Z
dc.date.available2014-05-20T15:22:20Z
dc.date.issued2002-01-01
dc.description.abstractThe local environment of Er3+ ions in microporous titanosilicate ETS-10 and in synthetic narsarsukite and glassy materials obtained by calcination of ETS-10 has been investigated by EXAFS, Raman and photoluminescence spectroscopies. Er L-III-edge EXAFS studies of Er3+-doped ETS-10 support the view that the exchanged Er3+ ions reside close to the (negatively charged) TiO6 octahedra. In ETS-10, Er3+ is partially bonded to framework oxygen atoms and hydration water molecules. The Er...Ti distance (3.3 Angstrom) is similar to the Na...Ti distances (3.15-3.20 Angstrom) reported previously for Na-ETS-10. Although the exact location of the ErO6 units within the host structure of Er3+-doped synthetic narsarsukite is still an open question, it is most likely that Er3+ substitutes Ti4+ rather than Na+ ions. EXAFS spectroscopy indicates that no significant clustering of erbium atoms occurs in the titanosilicate samples studied. Evidence for the insertion of Er3+ ions in the framework of narsarsukite has been obtained by Raman spectroscopy. This is indicated by the increasing full-width at half-maximum (FWHM) of the 775 cm(-1) peak and the increasing intensity of the anatase peaks as the erbium content increases. In addition, as the narsarsukite Er3+ content increases a band at ca. 515 cm(-1) firstly broadens and subsequently a new peak appears at ca. 507 cm(-1).Er3+-doped narsarsukite exhibits a characteristic local vibrational frequency, (h) over bar omega ca. 330 cm(-1), with an electron-phonon coupling, g ca. 0.2, which constitutes additional evidence for framework Er3+ insertion. The number of lines in the infrared emission spectrum of synthetic narsarsukite indicates the presence of two optically-active erbium centres with very similar local environments and an average I-4(13/2) lifetime of 7.8 +/- 0.2 ms.en
dc.description.affiliationUniv Aveiro, Dept Chem, P-3810193 Aveiro, Portugal
dc.description.affiliationUniv Aveiro, Dept Phys, P-3810193 Aveiro, Portugal
dc.description.affiliationUNESP, Inst Quim, BR-14800900 Araraquara, Brazil
dc.description.affiliationInst Super Tecn, INESC ID, Dept Mat Engn, P-1000049 Lisbon, Portugal
dc.description.affiliationUnespUNESP, Inst Quim, BR-14800900 Araraquara, Brazil
dc.format.extent1162-1168
dc.identifierhttp://dx.doi.org/10.1039/b107136j
dc.identifier.citationJournal of Materials Chemistry. Cambridge: Royal Soc Chemistry, v. 12, n. 4, p. 1162-1168, 2002.
dc.identifier.doi10.1039/b107136j
dc.identifier.issn0959-9428
dc.identifier.urihttp://hdl.handle.net/11449/33343
dc.identifier.wosWOS:000174550000062
dc.language.isoeng
dc.publisherRoyal Soc Chemistry
dc.relation.ispartofJournal of Materials Chemistry
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.titleLocal Er(III) environment in luminescent titanosilicates prepared from microporous precursorsen
dc.typeArtigo
dcterms.licensehttp://www.rsc.org/AboutUs/Copyright/LicencetoPublishforjournals.asp
dcterms.rightsHolderRoyal Soc Chemistry
unesp.author.orcid0000-0002-8162-6747[4]
unesp.author.orcid0000-0002-6243-7692[2]
unesp.author.orcid0000-0003-2841-5921[5]
unesp.author.orcid0000-0002-0417-9402[6]
unesp.author.orcid0000-0003-4747-6535[3]
unesp.author.orcid0000-0003-3286-9440[4]

Arquivos

Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções