Algebraic properties of Rogers-Szego functions: I. Applications in quantum optics

Nenhuma Miniatura disponível

Data

2009-09-18

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Iop Publishing Ltd

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 42, n. 37, p. 24, 2009.

Itens relacionados

Financiadores