Algebraic properties of Rogers-Szego functions: I. Applications in quantum optics
Nenhuma Miniatura disponível
Data
2009-09-18
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Iop Publishing Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 42, n. 37, p. 24, 2009.