Use of Paraconsistent Feature Engineering to support the Long Term Feature choice for Speaker Verification

Nenhuma Miniatura disponível

Data

2021-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The state-of-art models for speech synthesis and voice conversion can generate synthetic speech perceptually indistinguishable from human speech, and speaker verification is crucial to prevent breaches. The building feature that best distinguishes genuine speech between spoof attacks is an open research subject. We used the baseline ASVSpoof2017, Transfer Learning (TL) set, and Symlet and Daubechies Discrete Wavelet Packet Transform (DWPT) for this investigation. To qualitatively assess the features, we used Paraconsistent Feature Engineering (PFE). Our experiments pointed out that for the use of more robust classifiers, the best choice would be the AlexNet method, while in terms of classification regarding the Equal Error Rate metric, the best suggestion would be Daubechies filter support 21. Finally, our findings indicate that Symlet filter support 17 as the most promising feature, which is evidence that PFE is a useful tool and contributes to feature selection.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Proceedings of the International Florida Artificial Intelligence Research Society Conference, FLAIRS, v. 34.

Itens relacionados

Financiadores

Coleções