MR-Radix: a multi-relational data mining algorithm

dc.contributor.authorValencio, Carlos R. [UNESP]
dc.contributor.authorOyama, Fernando T. [UNESP]
dc.contributor.authorScarpelini, Paulo [UNESP]
dc.contributor.authorColombini, Angelo C.
dc.contributor.authorSouza, Rogeria C. G. de [UNESP]|Correa, Pedro L. P.
dc.contributor.authorCansian, Adriano Mauro [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-04-27T11:56:08Z
dc.date.available2015-04-27T11:56:08Z
dc.date.issued2012
dc.description.abstractBackground: Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods: Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results: This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion: The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.en
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, R. Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15055-000, SP, Brasil
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, R. Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15055-000, SP, Brasil
dc.description.affiliationUnespFederal University of São Carlos - UFSCar, Rodovia Washington Luís, Km 235, Caixa Postal 676 São Carlos, SP, Brazil
dc.description.affiliationUnespUniversity of São Paulo - USP, Avenida Prof. Luciano Gualberto, 380, travessa 3, São Paulo, São Paulo, Brazil
dc.identifierhttp://dx.doi.org/10.1186/2192-1962-2-4
dc.identifier.citationHuman-centric Computing and Information Sciences, v. 2, 2012.
dc.identifier.doi10.1186/2192-1962-2-4
dc.identifier.issn2192-1962
dc.identifier.lattes5914651754517864
dc.identifier.lattes0095921943345974
dc.identifier.lattes5564862621270143
dc.identifier.orcid0000-0003-4494-1454
dc.identifier.urihttp://hdl.handle.net/11449/122906
dc.language.isoeng
dc.relation.ispartofHuman-centric Computing and Information Sciences
dc.relation.ispartofjcr1.967
dc.relation.ispartofsjr0,658
dc.rights.accessRightsAcesso restrito
dc.sourceCurrículo Lattes
dc.subjectMR-Radixen
dc.subjectMulti-relational data miningen
dc.subjectAssociation rulesen
dc.subjectMining frequent itemsetsen
dc.subjectRelational databasesen
dc.titleMR-Radix: a multi-relational data mining algorithmen
dc.typeArtigo
unesp.author.lattes5914651754517864
unesp.author.lattes0095921943345974[6]
unesp.author.lattes5564862621270143
unesp.author.orcid0000-0003-4494-1454[6]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos