Empirical mode decomposition applied to acoustic detection of a cicadid pest

dc.contributor.authorSouza, Uender Barbosa de
dc.contributor.authorEscola, João Paulo Lemos
dc.contributor.authorMaccagnan, Douglas Henrique Bottura
dc.contributor.authorBrito, Leonardo da Cunha
dc.contributor.authorGuido, Rodrigo Capobianco [UNESP]
dc.contributor.institutionInstituto Federal de Goiás
dc.contributor.institutionUniversidade Federal de Goiás (UFG)
dc.contributor.institutionInstituto Federal de São Paulo
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Goiás
dc.date.accessioned2023-03-02T06:29:57Z
dc.date.available2023-03-02T06:29:57Z
dc.date.issued2022-08-01
dc.description.abstractThe sounds emitted by various insect species are highly specific and, thus, can be used as a way to acoustically characterize them. Consequently, acoustic insect detection has been widely studied by the scientific community in the field of pattern recognition. In Brazil, the cicada species Quesada gigas is considered a pest in coffee plantations, because the insects feed on the sap of the plants and can cause losses to farmers in mass attacks. Based on the fact that the most striking feature of cicadas is the emission of sounds for breeding purposes, this paper presents an alternative algorithm for acoustic detection of cicadas. The algorithm combines sound feature extraction with feature analysis based on Empirical Mode Decomposition (EMD) and Paraconsistent Feature Engineering (PFE), respectively, followed by a classification step based on a Support Vector Machine (SVM). Specifically, a study on the influence of eight EMD stopping criteria on the classification of sounds is presented. The results show that the proposed methodology can obtain accuracy values above 98% considering the Energy Difference Tracking (EDT) stopping criterion, vectors with 18 features and at least 46% of the vectors for SVM training. In the computational cost aspect, the stopping criterion Standard Deviation (SD) stands out, providing accuracy values above 96.67% for vectors with only two features. These results show that this study is feasible for Internet of Things applications, favoring the development of detection devices for field use with long-lasting autonomy. Technologies like these can enable the implementation of more and more daring projects involving Smart Farms and e-waste, aiming to reduce impacts to the environment. Suggestions for future work based on the PFE are also presented.en
dc.description.affiliationInstituto Federal de Goiás, DAAII, Matemática, Rua 75, 46
dc.description.affiliationUniversidade Federal de Goiás, EMC, Av. Universitária, 1488
dc.description.affiliationInstituto Federal de São Paulo, Av. C-1, 250
dc.description.affiliationInstituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo, 2265
dc.description.affiliationUniversidade Estadual de Goiás, Av. R2, Qd.01, Jardim Novo Horizonte II
dc.description.affiliationUnespInstituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo, 2265
dc.identifierhttp://dx.doi.org/10.1016/j.compag.2022.107181
dc.identifier.citationComputers and Electronics in Agriculture, v. 199.
dc.identifier.doi10.1016/j.compag.2022.107181
dc.identifier.issn0168-1699
dc.identifier.scopus2-s2.0-85133419563
dc.identifier.urihttp://hdl.handle.net/11449/242006
dc.language.isoeng
dc.relation.ispartofComputers and Electronics in Agriculture
dc.sourceScopus
dc.subjectCicada
dc.subjectEmpirical Mode Decomposition
dc.subjectEvent classification
dc.subjectMonitoring system
dc.subjectParaconsistent Feature Engineering
dc.subjectSmart Farms
dc.titleEmpirical mode decomposition applied to acoustic detection of a cicadid pesten
dc.typeArtigo
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos