Schur-SzegA composition of entire functions
Nenhuma Miniatura disponível
Data
2012-07-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
For any pair of algebraic polynomials A(x) = Sigma(n)(k=0) ((n)(k))a(k)x(k) and B(x) = Sigma(n)(k=0) ((n)(k))b(k)x(k), their Schur-Szego composition is defined by (A (*)(n) B)(x) = Sigma(n)(k=0) ((n)(k))a(k)b(k)x(k). Motivated by some recent results which show that every polynomial P(x) of degree n with P(-1) = 0 can be represented as K-a1 (*)(n) ... (*)(n) Kan-1 with K-a := (x + 1)(n-1) (x + a), we introduce the notion of Schur-Szego composition of formal power series and study its properties in the case when the series represents an entire function. We also concentrate on the special case of composition of functions of the form e(x) P(x), where P(x) is an algebraic polynomial and investigate its properties in detail.
Descrição
Idioma
Inglês
Como citar
Revista Matematica Complutense. New York: Springer, v. 25, n. 2, p. 475-491, 2012.