Vortex lattices in binary Bose-Einstein condensates with dipole-dipole interactions
Nenhuma Miniatura disponível
Data
2017-12-29
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
We study the structure and stability of vortex lattices in two-component rotating Bose-Einstein condensates with intrinsic dipole-dipole interactions and contact interactions. To address experimentally accessible coupled systems, we consider Dy164-Dy162 and Er168-Dy164 mixtures, which feature different miscibilities. The corresponding dipole moments are μDy=10μB and μEr=7μB, where μB is the Bohr magneton. For comparison we also discuss a case where one of the species is nondipolar. Under a large aspect ratio of the trap, we consider mixtures in the pancake-shaped format, which are modeled by effective two-dimensional coupled Gross-Pitaevskii equations, with a fixed polarization of the magnetic dipoles. Then, the miscibility and vortex-lattice structures are studied by varying the coefficients of the contact interactions (assuming the use of the Feshbach-resonance mechanism) and the rotation frequency. We present phase diagrams for several types of lattices in the parameter plane of the rotation frequency and the ratio of inter- and intraspecies scattering lengths. The vortex structures are found to be diverse for the more miscible Dy164-Dy162 composition, with a variety of shapes, whereas for the less miscible case of Er168-Dy164, the lattice patterns mainly feature circular or square formats.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Physical Review A, v. 96, n. 6, 2017.