Challenging situations for background subtraction algorithms
dc.contributor.author | Sanches, Silvio R. R. | |
dc.contributor.author | Oliveira, Claiton | |
dc.contributor.author | Sementille, Antonio C. [UNESP] | |
dc.contributor.author | Freire, Valdinei | |
dc.contributor.institution | Univ Tecnol Fed Parana | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.date.accessioned | 2019-10-04T12:13:38Z | |
dc.date.available | 2019-10-04T12:13:38Z | |
dc.date.issued | 2019-05-01 | |
dc.description.abstract | Background subtraction is the prerequisite for a wide range of applications including video surveillance, smart environments and content retrieval. Real environments present some challenging situations even for the most recent algorithms, such as shadows, illumination changes, dynamic background, among others. If a real environment is previously known and the challenging situations of this environment can be predicted, the choice of an appropriate algorithm to deal with such situations may be essential for obtaining better segmentation results. In our work, we identify the main situations that affect the performance of background subtraction algorithms and present a classification of these challenging situations. In addition, we present a solution that uses videos and ground-truths from existing datasets to evaluate the performance of segmentation algorithms when they need to deal with a specific challenging situation. | en |
dc.description.affiliation | Univ Tecnol Fed Parana, Cornelio Procopio, PR, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Bauru, Brazil | |
dc.description.affiliation | Univ Sao Paulo, Sao Paulo, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Bauru, Brazil | |
dc.format.extent | 1771-1784 | |
dc.identifier | http://dx.doi.org/10.1007/s10489-018-1346-4 | |
dc.identifier.citation | Applied Intelligence. Dordrecht: Springer, v. 49, n. 5, p. 1771-1784, 2019. | |
dc.identifier.doi | 10.1007/s10489-018-1346-4 | |
dc.identifier.issn | 0924-669X | |
dc.identifier.uri | http://hdl.handle.net/11449/184438 | |
dc.identifier.wos | WOS:000463843400009 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Applied Intelligence | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Background subtraction | |
dc.subject | Foreground extraction | |
dc.subject | Algorithm evaluation | |
dc.subject | Challenging situation | |
dc.title | Challenging situations for background subtraction algorithms | en |
dc.type | Artigo | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
unesp.author.lattes | 1882712230914196[3] | |
unesp.author.orcid | 0000-0002-4337-514X[3] |