On certain homological invariant and its relation with poincaré duality pairs

Nenhuma Miniatura disponível

Data

2018-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Let G be a group, S = {Si, i ∈ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a ℤ2 G-module. In [4] the authors defined a homological invariant E∗ (G, S, M), which is “dual” to the cohomological invariant E(G, S, M), defined in [1]. In this paper we present a more general treatment of the invariant E∗ (G, S, M) obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant E(G, S, M). We analyze, through the invariant E∗ (G, S, M), properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs.

Descrição

Idioma

Inglês

Como citar

Algebra and Discrete Mathematics, v. 25, n. 2, p. 177-187, 2018.

Itens relacionados