Automatic Knowledge Extraction Supported by Semantic Enrichment in Medical Records

dc.contributor.authorValencio, Carlos Roberto [UNESP]
dc.contributor.authorMartins, Rodrigo Dulizio [UNESP]
dc.contributor.authorMarioto, Matheus Henrique [UNESP]
dc.contributor.authorPizzigatti Correa, Pedro Luiz
dc.contributor.authorBabini, Maurizio [UNESP]
dc.contributor.authorHorng, S. J.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2020-12-10T22:32:00Z
dc.date.available2020-12-10T22:32:00Z
dc.date.issued2013-01-01
dc.description.abstractThe volume of digital information is growing considerably in the last two decades and there is currently a huge concern about obtaining this content quickly and effectively. In the health sector it is not different; to retrieve medical records that obtain relevant information about treatments and progresses of clinical conditions may speed up new patients' diagnosis. In this work it is described a framework proposed for automatically indexing information based on semantics and on text mining techniques. This task should work in parallel with the insertion of data into electronic records. The original contributions come down to search engine in texts organized so as to potentiate the amount of results obtained, as evidenced by the experiments carried out. The stored information is automatically fragmented into words, which have a semantic dictionary based on a framework that enables the information retrieval through semantics.en
dc.description.affiliationSao Paulo State Univ, Dept Ciencias Comp & Estat, Sao Paulo, Brazil
dc.description.affiliationUniv Sao Paulo, Dept Engn Comp & Sistemas Digitais, Sao Paulo, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Letras Modernas, Sao Paulo, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Ciencias Comp & Estat, Sao Paulo, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Letras Modernas, Sao Paulo, Brazil
dc.format.extent79-83
dc.identifierhttp://dx.doi.org/10.1109/PDCAT.2013.19
dc.identifier.citation2013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat). New York: Ieee, p. 79-83, 2013.
dc.identifier.doi10.1109/PDCAT.2013.19
dc.identifier.urihttp://hdl.handle.net/11449/197450
dc.identifier.wosWOS:000361018500013
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat)
dc.sourceWeb of Science
dc.subjectsemantics
dc.subjecttext mining
dc.subjectknowledge extraction
dc.subjectTFxIDF(Term Frequency x Inverse Document)
dc.titleAutomatic Knowledge Extraction Supported by Semantic Enrichment in Medical Recordsen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos