Rational Design of Chymotrypsin Inhibitor 2 by Optimizing Non-Native Interactions
dc.contributor.author | B. Da Silva, Fernando [UNESP] | |
dc.contributor.author | M. De Oliveira, Vinícius | |
dc.contributor.author | Sanches, Murilo N. [UNESP] | |
dc.contributor.author | Contessoto, Vinícius G. | |
dc.contributor.author | Leite, Vitor B. P. [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | LNBio/CNPEM | |
dc.contributor.institution | CNPEM | |
dc.contributor.institution | Rice University | |
dc.date.accessioned | 2020-12-12T01:10:09Z | |
dc.date.available | 2020-12-12T01:10:09Z | |
dc.date.issued | 2020-02-24 | |
dc.description.abstract | Rational design of proteins via mutagenesis is crucial for several biotechnological applications. A significant challenge of the computational strategies used to predict optimized mutations is to understand the influence of each amino acid during the folding process. In the present work, chymotrypsin inhibitor 2 (CI2) and several of its designed mutants have been simulated using a non-native hydrophobic and electrostatic potential as a structure-based Cα model. Through these simulations, we could identify the most critical folding stage to accelerate CI2 and also the charged residues responsible for providing its thermostability. The replacement of ionizable residues for hydrophobic ones tended to promote the formation of the CI2 secondary structure in the early transition state, which speeds up folding. However, this same replacement destabilized the native structure, and there was a decrease in the protein thermostability. Such a simple method proved to be capable of providing valuable information about thermodynamics and kinetics of CI2 and its mutations, thus being a fast alternative to the study of rational protein design. | en |
dc.description.affiliation | Department of Physics Institute of Biosciences Humanities and Exact Sciences São Paulo State University (UNESP) | |
dc.description.affiliation | Brazilian Biosciences National Laboratory Brazilian Center for Research in Energy and Materials LNBio/CNPEM | |
dc.description.affiliation | Brazilian Biorenewables National Laboratory LNBR Brazilian Center for Research in Energy and Materials CNPEM | |
dc.description.affiliation | Center for Theoretical Biological Physics Rice University | |
dc.description.affiliationUnesp | Department of Physics Institute of Biosciences Humanities and Exact Sciences São Paulo State University (UNESP) | |
dc.format.extent | 982-988 | |
dc.identifier | http://dx.doi.org/10.1021/acs.jcim.9b00911 | |
dc.identifier.citation | Journal of Chemical Information and Modeling, v. 60, n. 2, p. 982-988, 2020. | |
dc.identifier.doi | 10.1021/acs.jcim.9b00911 | |
dc.identifier.issn | 1520-5142 | |
dc.identifier.issn | 1549-9596 | |
dc.identifier.scopus | 2-s2.0-85077220845 | |
dc.identifier.uri | http://hdl.handle.net/11449/198341 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Chemical Information and Modeling | |
dc.source | Scopus | |
dc.title | Rational Design of Chymotrypsin Inhibitor 2 by Optimizing Non-Native Interactions | en |
dc.type | Artigo | |
unesp.author.orcid | 0000-0002-0285-8700[1] | |
unesp.author.orcid | 0000-0003-0927-3825[2] | |
unesp.author.orcid | 0000-0002-1891-9563 0000-0002-1891-9563[4] | |
unesp.author.orcid | 0000-0003-0008-9079[5] |